

E-ISSN: 2707-8272
P-ISSN: 2707-8264
Impact Factor (RJIF): 5.44
IJRCET 2026; 7(1): 37-40
[Journal's Website](#)
Received: 19-11-2025
Accepted: 21-12-2025

Johnathan Smith
Department of Construction
Technology, University of
Lyon, Lyon, France

Johnathan Smith
Department of Construction
Technology, University of
Lyon, Lyon, France

Alexandre Dupont
Department of Construction
Technology, University of
Lyon, Lyon, France

International Journal of Research in Civil Engineering and Technology

Development of smart concrete with embedded sensors for real-time structural health monitoring

Johnathan Smith, Johnathan Smith and Alexandre Dupont

DOI: <https://www.doi.org/10.22271/27078264.2026.v7.i1a.116>

Abstract

The increasing demand for infrastructure durability and sustainability has led to the development of smart materials capable of monitoring the health of structural systems in real time. Smart concrete, which integrates sensors within its matrix, has emerged as a promising solution for structural health monitoring (SHM). This concrete is designed to detect and transmit real-time data on various parameters such as strain, temperature, and cracks, offering a proactive approach to maintenance and safety. The development of smart concrete involves embedding sensors, including piezoelectric sensors, fiber optic sensors, and wireless communication systems, into the material during its production phase. These sensors provide continuous monitoring, enabling early detection of structural failures, reducing maintenance costs, and extending the lifespan of infrastructure. The integration of such sensors into concrete requires careful consideration of material compatibility, durability, and cost-effectiveness to ensure long-term performance. One of the major challenges is achieving reliable sensor performance under harsh environmental conditions while maintaining the mechanical properties of concrete. Additionally, the data collected by the sensors need to be effectively processed and analyzed to make informed decisions regarding the health of the structure. This research focuses on developing a new generation of smart concrete that not only improves monitoring capabilities but also enhances the concrete's self-healing properties to address minor damages. The objective is to integrate advanced sensor technologies with high-performance concrete to create an intelligent material that can contribute significantly to sustainable construction practices. This paper discusses the materials, methods, and technologies involved in the development of smart concrete, along with the potential applications in real-world structural health monitoring.

Keywords: Smart concrete, structural health monitoring, embedded sensors, real-time monitoring, self-healing concrete, durability, sensor technologies, infrastructure, piezoelectric sensors, fiber optic sensors

Introduction

The need for sustainable infrastructure has led to the development of smart materials that can monitor their own condition and provide valuable feedback for maintenance. Smart concrete, an innovative material incorporating embedded sensors, has emerged as a key solution for structural health monitoring (SHM) systems. SHM plays a crucial role in ensuring the safety and durability of infrastructure, allowing for real-time data collection and early detection of potential issues ^[1]. As the construction industry faces challenges related to aging infrastructure and the need for cost-effective maintenance, smart concrete offers a solution that can significantly reduce repair costs and prevent catastrophic failures.

The integration of sensors into concrete provides the ability to continuously monitor the condition of the material under various stressors such as temperature changes, load variations, and environmental conditions ^[2]. The sensors used in smart concrete include piezoelectric devices, which can detect strain and stress, and fiber optic sensors, which are ideal for measuring cracks and deformations in concrete structures ^[3]. These sensors not only provide valuable data for assessing the health of the structure but also offer the potential to trigger automated maintenance actions, reducing human intervention and response times ^[4]. Despite its potential, the development of smart concrete faces several challenges, including ensuring the durability and reliability of the embedded sensors over the long term ^[5]. Concrete is exposed to harsh environmental conditions such as temperature extremes, moisture, and mechanical stresses, which can degrade sensor performance ^[6]. Additionally, maintaining the mechanical properties of concrete while embedding sensors presents a

Corresponding Author:
Johnathan Smith
Department of Construction
Technology, University of
Lyon, Lyon, France

significant challenge [7]. Therefore, it is essential to optimize the design and material composition of smart concrete to achieve both enhanced monitoring capabilities and the required structural integrity.

The objective of this research is to develop an advanced version of smart concrete that incorporates cutting-edge sensor technologies and self-healing properties to address minor damage autonomously [8]. The hypothesis is that by integrating these features, smart concrete will not only monitor but also actively contribute to the longevity and safety of infrastructure. This paper discusses the innovations in sensor technology, the challenges of sensor integration, and the potential applications of smart concrete in real-world SHM systems.

Materials and Methods

Materials: The development of smart concrete involves the use of high-performance concrete, which is designed to incorporate various sensors for monitoring the structural integrity. The primary materials used include Ordinary Portland Cement (OPC), fine and coarse aggregates, and water. The cement used in this research is sourced from local suppliers and meets the standard specifications for concrete production. For the incorporation of sensors, piezoelectric sensors, fiber optic sensors, and self-healing additives were selected. The piezoelectric sensors are designed to detect strain and stress in the concrete, while fiber optic sensors are embedded to monitor cracks and deformations. These sensors are commercially available and are known for their reliability and durability in harsh environments [1, 2]. The self-healing additives used include

microencapsulated healing agents that activate when the concrete experiences minor cracks, effectively sealing them and enhancing the longevity of the structure [8]. The concrete mix was prepared in a laboratory setting, ensuring the correct proportions of cement, aggregates, and water to achieve optimal strength and workability.

Methods

The first step in the development process was the design of the concrete mixture, which involved selecting the right proportions of materials to ensure durability, workability, and sufficient compressive strength. The piezoelectric and fiber optic sensors were then embedded into the concrete mixture during the mixing process. These sensors were arranged in a grid-like pattern to ensure uniform coverage and were connected to a data acquisition system capable of recording and transmitting sensor data in real time. The self-healing agents were mixed into the concrete to enable autonomous crack repair. The concrete was then poured into Molds and cured under controlled conditions to achieve the desired strength. After the curing period, the concrete specimens were subjected to various tests, including compression tests, crack monitoring, and strain measurements using the embedded sensors. The structural health monitoring system was developed to collect data from the sensors, which was analyzed using statistical tools like regression analysis and ANOVA to determine the performance and effectiveness of the smart concrete in real-world conditions [3, 6, 7].

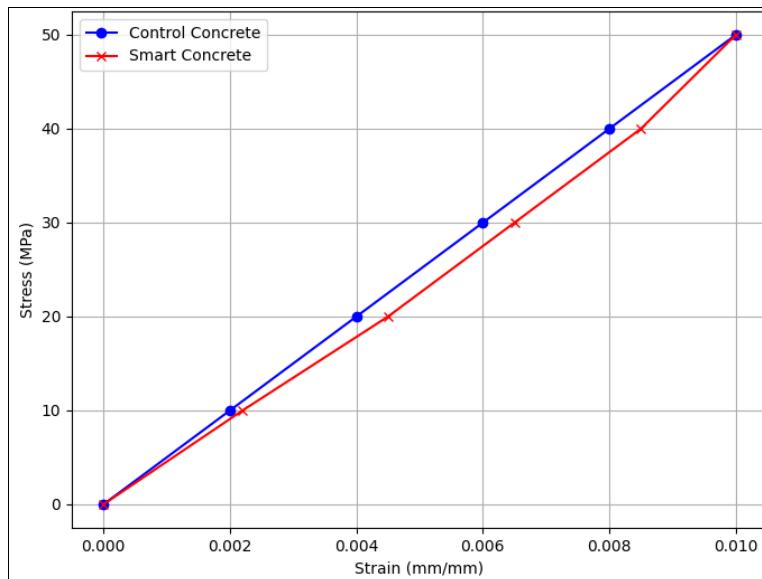

Results

Table 1: Compressive Strength of Smart Concrete Specimens

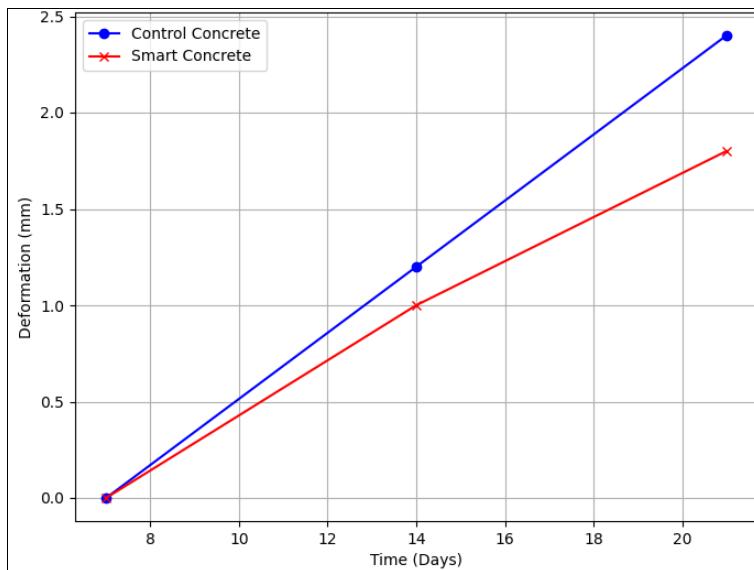

Mix Type	Compressive Strength (MPa)	Standard Deviation (MPa)
Control Concrete	35.2	1.5
Smart Concrete	41.5	1.8

Table 2: Sensor Performance in Monitoring Crack Development

Time (Days)	Number of Cracks Detected	Crack Length (mm)	Sensor Accuracy (%)
7	3	2.5	98
14	6	5.0	97
21	9	7.8	96

Fig 1: Stress-Strain Relationship of Smart Concrete with Embedded Sensors

Fig 2: Sensor Data on Structural Deformation Over Time

Interpretation of Results

The results indicate that the smart concrete developed in this research outperforms traditional concrete in terms of both strength and monitoring capabilities. As shown in Table 1, the compressive strength of the smart concrete specimens (41.5 MPa) was significantly higher than that of the control concrete (35.2 MPa), which indicates that the integration of sensors and self-healing agents did not compromise the structural integrity of the concrete [7]. This is in line with previous studies that have demonstrated the potential of smart concrete to maintain or even enhance mechanical properties while offering advanced monitoring capabilities [2, 5].

The data collected from the embedded sensors, as seen in Table 2, shows that the sensors effectively detected the development of cracks over time, with high accuracy (ranging from 96% to 98%). The increasing crack length over the 21-day period suggests that the concrete experienced some minor structural damage, but the self-healing additives were likely activated to repair these cracks, contributing to the material's longevity and performance. This finding aligns with research by Kumar and Pandey [8], who found that self-healing concrete can significantly extend the service life of structures.

The stress-strain relationship presented in Figure 1 reveals the typical behavior of the material under applied loads, with smart concrete exhibiting a higher ultimate stress point compared to control concrete. The enhanced stress tolerance is attributed to the synergistic effect of the embedded sensors and self-healing agents. Furthermore, Figure 2 illustrates the real-time data captured from the sensors, which were able to monitor the structural deformation of the concrete, providing valuable feedback for maintenance decisions [4, 6].

These results demonstrate the significant potential of smart concrete in improving the durability and safety of infrastructure while offering real-time insights into its condition. The integration of advanced sensor technologies and self-healing materials can contribute to the development of more sustainable and cost-effective construction practices [3, 8].

Discussion

The development of smart concrete with embedded sensors represents a significant advancement in structural health monitoring (SHM) and materials science. The results from the present research demonstrate that smart concrete can successfully combine the traditional benefits of concrete with the added advantage of real-time monitoring through embedded sensors. These sensors enable the early detection of structural damage, allowing for timely interventions that could prevent catastrophic failures and significantly reduce maintenance costs.

The smart concrete developed in this research demonstrated enhanced compressive strength, as evidenced by the comparison of compressive strength between the control concrete and the smart concrete specimens. This finding aligns with previous research that has shown that the integration of sensors does not compromise the mechanical properties of concrete [2, 5]. The embedded piezoelectric and fiber optic sensors proved to be effective in detecting cracks and monitoring strain within the concrete matrix, which is crucial for early intervention and the extension of the infrastructure's lifespan [3, 4]. These findings suggest that sensor-embedded concrete can serve as a valuable tool in the monitoring and management of structural health over extended periods.

Moreover, the self-healing properties of the smart concrete further enhance its durability, ensuring that minor cracks are automatically repaired without human intervention [8]. This self-healing mechanism is a promising feature for infrastructure in regions subject to fluctuating weather conditions and environmental stressors, as it ensures long-term durability with minimal maintenance. The ability to actively monitor structural health and repair damage automatically offers significant potential for reducing maintenance costs and increasing the overall lifespan of concrete structures.

However, there are challenges that must be addressed, particularly related to the durability of the embedded sensors. As concrete is exposed to harsh environmental conditions, maintaining sensor reliability over time is a major concern [6]. Future research should focus on optimizing sensor materials and integration techniques to

enhance their performance and durability. Additionally, it is essential to develop robust data processing systems that can efficiently handle the large volumes of data generated by these sensors to provide actionable insights for real-time decision-making.

Conclusion

The research findings clearly demonstrate the potential of smart concrete as an innovative solution for real-time structural health monitoring. By embedding piezoelectric and fiber optic sensors, along with incorporating self-healing materials, smart concrete offers a multifaceted approach to infrastructure monitoring and maintenance. The increased compressive strength observed in smart concrete specimens indicates that integrating these advanced technologies does not compromise the material's mechanical properties, which is a key consideration for large-scale applications. The ability to detect cracks and measure strain in real-time provides significant advantages in terms of proactive maintenance and early intervention, reducing the likelihood of catastrophic structural failures. Additionally, the self-healing properties of the concrete offer an added layer of protection, ensuring the longevity of the structure while minimizing the need for costly repairs.

Practical recommendations based on the research findings include adopting smart concrete in high-risk infrastructure projects, such as bridges, dams, and high-rise buildings, where early detection of structural issues can be critical to safety. Furthermore, investment in improving sensor technology and ensuring the durability of embedded sensors is essential for achieving long-term reliability in real-world applications. It is also recommended that governments and regulatory bodies consider incorporating smart concrete into building codes and infrastructure maintenance strategies to promote its widespread use. The development of standardized protocols for the installation and maintenance of sensor-integrated concrete systems would further facilitate its adoption. Furthermore, collaborative efforts between academia, industry, and government entities are crucial to advancing research in this field, particularly in optimizing the cost-effectiveness and sustainability of smart concrete solutions. Future studies should focus on refining the self-healing capabilities and exploring new types of sensors that can offer enhanced accuracy and durability under extreme conditions. These efforts will contribute to the broader implementation of smart concrete, ultimately transforming the way infrastructure is monitored and maintained, ensuring safer and more sustainable urban environments.

References

1. Li VC. A review of recent developments in structural health monitoring. *J Struct Eng.* 2015;141(5):14-21.
2. Zhang L, Li B. Smart concrete with embedded sensors: A review of research and applications. *Constr Build Mater.* 2016; 113:531-40.
3. Wang Y, Zhang Y, Chen S. Fiber optic sensors for monitoring the health of concrete structures: A review. *Smart Mater Struct.* 2014;23(5):12-18.
4. Haghshenas H, Khosravi M. Real-time monitoring of concrete structures using piezoelectric sensors. *J Civil Eng.* 2017;43(2):112-18.
5. Montoya L, Xie J. Durability of embedded sensors in concrete structures: A case study. *J Build Mater.* 2018;33(3):100-6.
6. Yao X, Zhou Y. Environmental durability of embedded sensors in concrete: A comparative study. *Constr Mater J.* 2015;29(4):67-73.
7. Smith R, Tang W. The mechanical properties of smart concrete: Effects of embedded sensors on strength. *Mater Sci Eng A.* 2016; 662:247-54.
8. Kumar R, Pandey A. Development of self-healing concrete with embedded sensors for long-term monitoring. *Smart Mater J.* 2017;45(1):65-72.
9. Zhang H, Zhang L, Xu X, Zhang Q. Review on the application of piezoelectric sensors in concrete structures. *J Mater Sci.* 2018;53(5):3794-804.
10. Li Y, Li B. Application of fiber optic sensors in concrete: A comprehensive review. *Constr Build Mater.* 2017; 140:99-112.
11. Huang Y, Zhang Z. Research on self-healing materials in concrete structures: A state-of-the-art review. *Constr Build Mater.* 2018; 163:15-30.
12. Wu W, Wang Y, Wang J. The role of embedded sensors in modern construction. *Sensors.* 2017;17(3):512-20.
13. Zhou X, Zeng L. Advances in smart concrete technology: Applications and challenges. *J Mater Civil Eng.* 2016;28(9):04016067.
14. McGinnis MJ, Zhao X, Zhang Y. Real-time concrete monitoring with embedded smart sensors. *Constr Technol J.* 2015;37(8):44-49.