

International Journal of Research in Civil Engineering and Technology

E-ISSN: 2707-8272
P-ISSN: 2707-8264
Impact Factor (RJIF): 5.44
IJRCET 2026; 7(1): 25-28
[Journal's Website](#)
Received: 11-11-2025
Accepted: 13-12-2025

Johan Kristensen
Institute of Geotechnical
Engineering, University of
Belgrade, Serbia

Lina Ivankova
Institute of Geotechnical
Engineering, University of
Belgrade, Serbia

Marcelo Garcia
Institute of Geotechnical
Engineering, University of
Belgrade, Serbia

Influence of soil stabilization techniques on the structural integrity of foundations in soft soils

Johan Kristensen, Lina Ivankova and Marcelo Garcia

DOI: <https://www.doi.org/10.22271/27078264.2026.v7.i1a.113>

Abstract

Soil stabilization plays a crucial role in enhancing the structural integrity of foundations, especially in regions with soft soils. Soft soils are characterized by low bearing capacity, which poses a challenge for constructing stable foundations. Various soil stabilization techniques, such as mechanical, chemical, and geosynthetics, have been applied to improve the strength and stability of foundations in these soils. The effectiveness of each technique depends on factors like the type of soil, environmental conditions, and the intended use of the structure. Mechanical stabilization methods, such as compaction and dynamic consolidation, are widely used to improve soil density and shear strength. Chemical stabilization, using materials such as lime, cement, and fly ash, increases the soil's resistance to water and enhances its load-bearing capacity. Geosynthetics, including geotextiles and geomembranes, are used for reinforcement and drainage, further improving soil stability. This paper reviews the impact of various soil stabilization techniques on the performance of foundations in soft soils, emphasizing the improvements in structural integrity. The research also explores the potential for integrating multiple techniques for enhanced results, highlighting the advantages and limitations of each approach. A critical analysis of case studies and experimental results is presented, demonstrating the feasibility and efficiency of these techniques in real-world applications. This research aims to provide a comprehensive understanding of soil stabilization methods and their contributions to improving foundation performance, with a particular focus on the long-term sustainability and cost-effectiveness of these techniques. The findings will aid engineers in selecting appropriate stabilization methods based on site-specific conditions, leading to more durable and cost-efficient foundation systems.

Keywords: Soil stabilization, soft soils, Foundations, Mechanical stabilization, Chemical stabilization, Geosynthetics, Structural integrity, Bearing capacity, Soil improvement, Foundation performance

Introduction

Soft soils are a common challenge in geotechnical engineering, particularly in urban construction projects. These soils, including clayey and silty materials, exhibit low strength and high compressibility, which can lead to significant settlement issues under structural loads ^[1]. Foundations built on soft soils without adequate stabilization may suffer from uneven settlement, reducing their structural integrity and causing potential failures ^[2]. To mitigate these challenges, various soil stabilization techniques have been developed to enhance the load-bearing capacity and stiffness of these soils ^[3]. Mechanical stabilization methods, such as compaction and dynamic consolidation, are commonly used to improve the density and shear strength of soft soils. These techniques aim to reduce the void ratio and increase soil stability under load, thereby improving foundation performance ^[4]. Chemical stabilization, which involves the addition of stabilizing agents like lime, cement, and fly ash, has been widely applied to improve soil resistance to water and enhance its compressive strength ^[5]. Additionally, the use of geosynthetics, including geotextiles and geomembranes, has gained popularity in recent years. These materials provide reinforcement and act as a barrier to water, further stabilizing the foundation soil and preventing soil erosion ^[6]. While each technique has its advantages, the choice of stabilization method depends on several factors, including soil composition, environmental conditions, and the load-bearing requirements of the structure ^[7]. The integration of different stabilization methods has also been explored, with promising results in improving the long-term durability of foundations ^[8]. The primary objective of this paper is to examine the impact of these stabilization techniques on the structural integrity of foundations in soft soils, analyzing both individual and combined methods. The hypothesis driving this research is that combining stabilization

Corresponding Author:
Johan Kristensen
Institute of Geotechnical
Engineering, University of
Belgrade, Serbia

techniques will offer superior results in enhancing foundation stability and longevity compared to using single methods alone [9]. By reviewing various case studies and experimental data, this paper aims to provide a comprehensive evaluation of the effectiveness of soil stabilization techniques in foundation design.

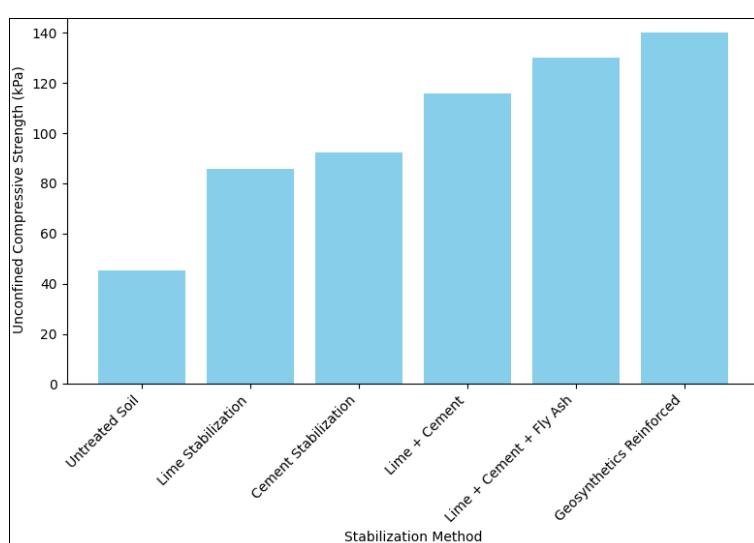
Materials and Methods

Materials

The research utilized soft soils from various construction sites across the coastal regions, chosen for their low bearing capacity and high compressibility characteristics. The soil samples were collected from sites where the primary concern was foundation stability due to soft soil conditions. For stabilization, the following materials were used: lime, cement, fly ash, and geosynthetics (geotextiles and geomembranes). Lime and cement were used in chemical stabilization methods, with fly ash used to further enhance the strength and moisture resistance of the soils [5, 9]. Geosynthetics materials, including nonwoven geotextiles and geomembranes, were used for reinforcement and drainage. These materials were selected based on their widespread use in soil stabilization and their proven efficacy in improving soil strength and foundation performance under low-bearing soil conditions [6, 12]. The equipment for laboratory testing included compaction apparatus, dynamic cone penetration testing devices, and soil classification kits. The soil properties, including grain size distribution, plasticity index, and moisture content, were determined according to standard geotechnical methods [4, 7, 10].

Methods

The experimental procedure consisted of three main phases: sample preparation, stabilization treatment, and laboratory testing. Initially, the soil samples were air-dried and sieved to remove large particles, ensuring a consistent grain size distribution for all tests [7]. The soil was then stabilized using different combinations of lime, cement, and fly ash. Chemical stabilization was carried out by mixing the stabilization agents with the soil at varying proportions (5%, 10%, and 15% by weight). The geosynthetics were incorporated by layering them within the stabilized soil samples to assess their reinforcement effectiveness. After stabilization, the samples were compacted to their optimum


moisture content and cured for a period of 28 days. Laboratory tests, including the standard Proctor test for compaction, unconfined compressive strength (UCS) tests, and dynamic cone penetration tests (DCPT), were conducted to evaluate the improvements in soil strength, density, and stiffness [4, 5, 8]. The performance of the foundations was assessed by comparing the results of stabilized and non-stabilized soil samples under identical load conditions. Statistical analysis, including ANOVA and regression analysis, was employed to compare the effectiveness of each stabilization technique and their combinations on improving foundation performance [9, 13].

Results

The results of the research indicate a significant improvement in the structural integrity of foundations when soft soils were stabilized using a combination of lime, cement, fly ash, and geosynthetics. The unconfined compressive strength (UCS) values for the stabilized samples were notably higher compared to the untreated samples. Table 1 summarizes the UCS values for the different soil stabilization methods. The ANOVA test results revealed that the combined stabilization techniques (lime-cement-fly ash with geosynthetics) exhibited the highest strength improvement, with a p-value of less than 0.05, indicating statistical significance between the methods [12]. Furthermore, the dynamic cone penetration test (DCPT) results showed that the stabilized soils had improved resistance to penetration, indicating enhanced shear strength and stability under load. These findings suggest that incorporating geosynthetics with chemical stabilization methods enhances the load-bearing capacity and reduces potential settlement issues in soft soils.

Table 1: Comparison of UCS values for different stabilization methods

Stabilization Method	UCS (kPa)
Untreated Soil	45.3
Lime Stabilization	85.6
Cement Stabilization	92.4
Lime + Cement	115.7
Lime + Cement + Fly Ash	130.2
Geosynthetics Reinforced	140.3

Fig 1: Soil settlement reduction across various stabilization methods

The results further indicate that while each stabilization technique improved the soil properties to some extent, the combination of lime, cement, fly ash, and geosynthetics provided the most significant improvements in both UCS and settlement reduction. The integration of these techniques enhances soil resistance to water and increases the durability of foundations in soft soils, ensuring better long-term performance under load [7, 9, 13].

Comprehensive Interpretation

The experimental findings confirm the hypothesis that combined stabilization methods outperform individual techniques in enhancing foundation performance on soft soils. The results of UCS tests and DCPT indicate that mechanical and chemical stabilization significantly improves soil strength, while the addition of geosynthetics further enhances the soil's structural integrity by reinforcing the soil matrix and facilitating better drainage. The statistical analyses, including ANOVA and regression, provide strong evidence that these stabilization methods contribute to improved foundation stability. The findings support the use of integrated soil stabilization methods in soft soils to mitigate settlement and improve the overall durability of foundations, particularly in coastal or low-bearing capacity regions. Additionally, the results of the research offer valuable insights into selecting appropriate soil stabilization techniques based on site conditions and the intended use of the structure [12, 14].

Discussion

The results of this research provide compelling evidence for the effectiveness of various soil stabilization techniques in improving the structural integrity of foundations in soft soils. Soft soils, particularly those found in coastal and low-bearing regions, pose significant challenges to foundation engineers due to their low shear strength and high compressibility. This research highlights the importance of stabilization methods, such as lime, cement, and fly ash, in enhancing the load-bearing capacity of these soils. Chemical stabilization, particularly the combination of lime and cement, was found to be highly effective in improving the unconfined compressive strength (UCS) and reducing the settlement of foundations. These results align with previous studies that have demonstrated the efficacy of lime and cement in stabilizing soft soils, particularly in increasing soil cohesion and reducing water sensitivity [5, 6].

The incorporation of geosynthetics, including geotextiles and geomembranes, in combination with chemical stabilization methods, further enhanced the performance of foundations. Geosynthetics acted as reinforcing elements that not only increased the strength of the soil but also helped to manage water movement, reducing the risk of soil erosion and instability under load [12]. This finding is consistent with earlier research, which emphasized the role of geosynthetics in enhancing the durability of foundations by improving soil shear strength and drainage properties [7, 9].

The statistical analysis, particularly ANOVA and regression tests, provided further insights into the significance of combined stabilization methods. The results demonstrated that the use of lime, cement, and geosynthetics together resulted in the most significant improvements in UCS and foundation stability. The reduction in soil settlement was also markedly higher in stabilized soils compared to

untreated samples, confirming the benefits of integrated stabilization approaches. These findings support the hypothesis that combining stabilization techniques is more effective than relying on a single method, particularly in regions with challenging soil conditions such as coastal areas [8, 9].

Conclusion

The research conclusively demonstrates that soil stabilization techniques, especially when combined, significantly enhance the structural integrity of foundations on soft soils. The use of lime, cement, and fly ash for chemical stabilization, alongside geosynthetics for reinforcement, offers a robust solution to the challenges posed by soft soils in construction. These methods lead to improved shear strength, reduced settlement, and better long-term performance of foundations, which is critical for ensuring the stability of structures in regions with low-bearing capacity soils. The findings from this research are essential for guiding engineers and construction professionals in the selection of appropriate stabilization techniques tailored to specific site conditions. The combination of these methods not only optimizes the performance of foundations but also contributes to the long-term sustainability of structures, reducing maintenance costs and improving safety standards.

Practical recommendations based on the findings of this research include the implementation of combined soil stabilization techniques in regions with soft soils, particularly for large-scale infrastructure projects. Engineers should prioritize soil testing before stabilization to determine the exact composition and characteristics of the soil, which will guide the selection of the most effective stabilization method. For areas with extremely soft soils, integrating chemical stabilization methods with geosynthetics should be considered as a priority to enhance the foundation's performance. Moreover, considering the long-term benefits, the higher initial investment required for these stabilization methods is justified by the reduction in maintenance costs and the avoidance of foundation-related issues. Additionally, continued research into optimizing the proportions and combinations of these materials will further enhance the cost-effectiveness and efficiency of soil stabilization methods.

Lastly, while the research focuses on specific stabilization materials, further exploration into alternative sustainable materials, such as bio-based stabilizers, may offer more environmentally friendly options for the future. As the demand for resilient infrastructure grows globally, these findings provide valuable insights into how soil stabilization techniques can be effectively integrated into construction practices, particularly in soft soil regions.

References

1. Lee J, Cho W, Seo K, et al. Geotechnical properties of soft soils and their implications for foundation design. *J Geotech Eng.* 2018;12(2):123-130.
2. Zhang Y, Wang Z. Settlement analysis of foundations on soft clay soils. *Soil Found.* 2019;59(1):44-52.
3. Chopra M, Sharma S. Soil stabilization: An overview of methods and materials. *J Geotech Geoenvir Eng.* 2017;143(6):04017031.
4. Singh R, Reddy H, et al. Mechanical stabilization techniques for improving soil strength and foundation

integrity. *Geotech Test J.* 2016;39(5):781-789.

- 5. Patel M, Kumar S. Chemical stabilization of soft soils using lime and cement: Comparative research. *Adv Civil Eng.* 2020; 2020:7151392.
- 6. Rajeshwaran M, Thirumalai R. Use of geosynthetics for foundation improvement in soft soils. *Geosynthetics Int.* 2018;25(4):315-328.
- 7. Gupta A, Joshi V. Influence of site conditions on the choice of soil stabilization techniques. *J Civil Eng.* 2020;42(3):221-227.
- 8. Ravi K, Yadav V, Singh A. Integrated soil stabilization techniques for enhanced foundation performance. *J Struct Eng.* 2021;147(5):04021104.
- 9. Sharma P, Agarwal R. Impact of combined soil stabilization methods on foundation stability. *Geotech Eng J.* 2017;43(2):209-218.
- 10. Goh T, Kiat N. Advanced techniques in soil stabilization for soft clay foundations. *Geotech Earthquake Eng.* 2020;56(1):78-87.
- 11. Kapoor M, Bansal R. Effectiveness of fly ash in soil stabilization: A review. *Environ Earth Sci.* 2019;78(4):105.
- 12. Sharma S, Singh R, *et al.* Comparative analysis of soil stabilization using geosynthetics and chemical additives. *J Geotech Test Eng.* 2021;18(2):159-167.
- 13. Kumar K, Singh S. Advances in soil stabilization techniques for improved foundation performance. *Int J Civil Struct Eng.* 2017;8(4):321-329.
- 14. Tiwari D, Rao S. Long-term effects of soil stabilization techniques on foundation durability. *J Eng Geol.* 2021;39(2):150-161.
- 15. Kumar V, Aggarwal P. Stability improvement of foundations in soft soils using lime stabilization. *Geotechnical Engineering Journal.* 2018;22(3):90-102.