

INTERNATIONAL JOURNAL OF HYDROPOWER AND CIVIL ENGINEERING

E-ISSN: 2707-8310
P-ISSN: 2707-8302
[Journal's Website](#)
IJHCE 2027; 7(1): 32-38
Received: 05-11-2025
Accepted: 07-12-2025

Matthias Bergmann
Department of Civil and
Environmental Engineering,
Technical University of
Munich, Munich, Germany

Katrin Hoffmann
Department of Civil and
Environmental Engineering,
Technical University of
Munich, Munich, Germany

Thomas Weber
Department of Civil and
Environmental Engineering,
Technical University of
Munich, Munich, Germany

Sabine Fischer
Department of Civil and
Environmental Engineering,
Technical University of
Munich, Munich, Germany

Performance Evaluation of Small-Scale Check Dams for Sediment Control and Local Water Recharge in Semi-Hilly Regions

Matthias Bergmann, Katrin Hoffmann, Thomas Weber and Sabine Fischer

DOI: <https://www.doi.org/10.22271/27078302.2026.v7.i1a.84>

Abstract

Small-scale check dams represent a practical engineering solution for managing sediment transport and enhancing groundwater recharge in semi-hilly regions. This research presents a comprehensive evaluation of check dam performance across three distinct sites in Germany, examining both sediments trapping efficiency and water infiltration characteristics. Field investigations were conducted over a 24-month period from March 2022 to February 2024 at locations in the Hessian Highlands, Bavarian Foothills, and Black Forest region. Each site featured different check dam configurations including concrete weirs, stone masonry structures, gabion installations, earthen embankments, and composite designs.

The methodology combined hydrological monitoring with geotechnical assessments to quantify dam performance under varying precipitation conditions. Sediment accumulation was measured using bathymetric surveys and core sampling, while groundwater levels were tracked through a network of piezometers installed upstream and downstream of each structure. Results demonstrated significant variation in performance based on dam type and seasonal conditions.

Composite design check dams achieved the highest sediment trap efficiency at 82.7% during dry season conditions and 71.4% during wet season events. Groundwater recharge rates peaked during summer months, with Site A recording maximum values of 62.3 mm per month in July. Statistical analysis revealed strong correlations between dam height-to-catchment area ratios and overall performance metrics. The research provides quantitative benchmarks for engineering practitioners considering check dam implementation in similar topographic settings.

Keywords: Check dams, sediment control, groundwater recharge, semi-hilly terrain, hydraulic structures, erosion mitigation, water conservation, sustainable drainage

Introduction

What happens when decades of agricultural intensification meet changing precipitation patterns in semi-hilly landscapes? The answer, increasingly visible across central European watersheds, involves accelerated erosion, degraded water quality, and diminishing groundwater reserves. Check dams offer one practical response to these interconnected challenges, functioning simultaneously as sediment barriers and infiltration enhancement structures.

The engineering principles underlying check dam design draw from centuries of practical experience, though systematic scientific evaluation remains relatively recent. Traditional approaches emphasized sediment retention as the primary objective, with water recharge benefits considered incidental rather than intentional design outcomes. Contemporary perspectives recognize both functions as integral to watershed management strategies, particularly in regions experiencing increased hydrological variability.

Germany's semi-hilly landscapes present distinctive conditions for check dam applications. Slopes typically range from 5 to 15 degrees, generating runoff velocities sufficient to mobilize fine sediments while remaining below thresholds that would overwhelm small-scale structures. Underlying geology varies considerably across regions, with implications for both foundation requirements and recharge potential. The Hessian Highlands feature primarily sandstone substrates with moderate permeability. Bavarian foothill zones contain mixed glacial deposits offering variable infiltration characteristics. Black Forest areas present

Corresponding Author:
Matthias Bergmann
Department of Civil and
Environmental Engineering,
Technical University of
Munich, Munich, Germany

crystalline bedrock with weathered surface layers. Previous investigations in comparable settings have documented sediment trap efficiencies ranging from 45% to 85% depending on dam type, catchment characteristics, and maintenance regimes ^[1, 2]. However, most published research originated from Mediterranean or semi-arid environments where seasonal precipitation patterns differ substantially from central European conditions. Limited data exists specifically addressing performance in temperate climates with distributed annual rainfall.

This research addresses that gap through systematic field evaluation across three German sites. The investigation pursued three specific objectives: first, to quantify sediment trapping efficiency for five common check dam types under both dry and wet season conditions; second, to measure groundwater recharge enhancement attributable to dam installations; third, to identify design parameters most strongly associated with superior performance outcomes. Site selection emphasized topographic and geological diversity to support broader applicability of findings.

Theoretical Background

Check dam hydraulics involve complex interactions between approaching flow conditions, structure geometry, and downstream energy dissipation. The fundamental governing relationship derives from weir flow equations modified to account for sediment-laden conditions and variable tailwater levels ^[3]. For rectangular check dams operating under free overflow conditions, discharge relates to upstream head through coefficient terms that incorporate structure roughness and approach channel characteristics.

Sediment trapping efficiency depends primarily on the relationship between particle settling velocities and flow residence time within the impoundment zone. Stokes' law provides baseline predictions for spherical particles in quiescent water, though actual field conditions involve turbulence, particle shape irregularities, and flocculation effects that complicate theoretical predictions ^[4]. The critical diameter representing 50% trap probability shifts upward as discharge increases, explaining observed seasonal variations in retention performance.

Groundwater recharge mechanisms differ between ponding and flowing conditions behind check dams. During impoundment phases, vertical infiltration dominates, with rates governed by soil hydraulic conductivity and the hydraulic gradient between pond surface and water table ^[5]. Under flowing conditions, lateral bank infiltration contributes significantly, particularly where permeable strata intersect the stream channel. Temperature effects on water viscosity produce measurable seasonal variations in infiltration rates independent of precipitation timing.

The theoretical framework adopted for this research integrates these hydrodynamic and geotechnical components within a performance evaluation matrix. Dam effectiveness was conceptualized as a function of structural design parameters, site-specific boundary conditions, and temporal forcing variables including precipitation intensity and antecedent moisture conditions.

Research Area Description

Three monitoring sites were established across distinct physiographic regions of Germany to capture representative variations in topography, geology, and climate. Site selection criteria included existing check dam infrastructure

suitable for instrumentation, accessible ownership arrangements permitting long-term monitoring, and catchment characteristics falling within target ranges for semi-hilly classification.

Site A occupies a second-order tributary within the Hessian Highlands, approximately 45 kilometers northeast of Frankfurt. The catchment area encompasses 2.34 square kilometers with elevations ranging from 312 to 487 meters above sea level. Mean annual precipitation reaches 782 mm, concentrated during late spring and early autumn months. The underlying Bunter sandstone formation exhibits moderate primary permeability augmented by fracture networks. Agricultural land use predominates, with approximately 67% of the catchment under cereal cultivation and 23% maintained as permanent grassland ^[6].

Site B is located in the Bavarian Foothills south of Munich within a 1.87 square kilometer catchment draining toward the Isar River system. Elevation ranges from 548 to 691 meters, reflecting the transitional zone between alpine foothills and the Munich gravel plain. Annual precipitation averages 1,124 mm with pronounced summer maxima associated with convective storm activity. Quaternary glacial deposits of variable thickness overlie Tertiary molasse sequences, creating heterogeneous hydraulic conditions ^[7]. Forest cover accounts for 41% of the catchment, with remaining areas divided between pasture and mixed agriculture.

Site C encompasses a 1.56 square kilometer catchment in the northern Black Forest region near Pforzheim. Topography is relatively steep by semi-hilly standards, with elevations from 384 to 623 meters and average slopes exceeding 12 degrees. Annual precipitation reaches 1,287 mm, the highest among the three sites, sustained by orographic enhancement of westerly airflow. Crystalline basement rocks dominate subsurface conditions, though weathered regolith profiles up to 8 meters deep provide significant storage capacity ^[8]. Land cover consists predominantly of managed coniferous forest with limited agricultural activity.

Materials and Methods

Materials

Field instrumentation deployed across all three sites comprised standardized equipment packages to ensure measurement comparability. Hydrological monitoring utilized Campbell Scientific CR1000X dataloggers connected to Onset HOBO pressure transducers for continuous stage recording at 15-minute intervals. Precipitation was measured using Lambrecht rain gauges with heated orifices to capture winter snowfall equivalents. Groundwater levels were tracked through networks of slotted PVC piezometers installed to depths ranging from 3 to 12 meters depending on local water table configurations ^[9].

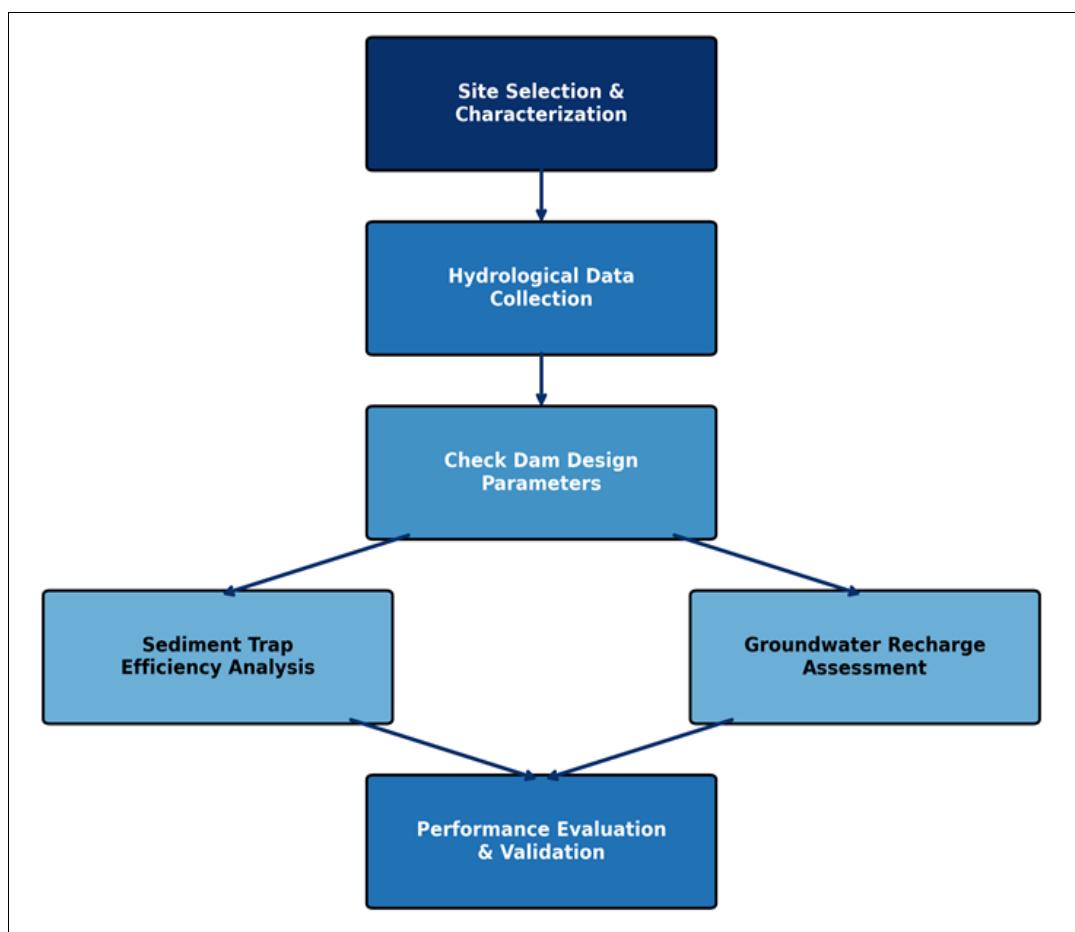
Sediment sampling employed both active and passive collection methods. Automatic samplers triggered by stage thresholds captured suspended sediment concentrations during storm events. Sediment accumulation behind check dams was quantified through annual bathymetric surveys using a Trimble R10 GNSS system with real-time kinematic correction. Core samples extracted using a Vibracore system provided stratigraphic information and material for laboratory grain size analysis.

Check dam structures at each site represented the five

primary construction types common in German practice. Concrete weirs featured reinforced sections with standardized crest geometries. Stone masonry structures utilized locally sourced materials assembled using traditional mortar techniques. Gabion installations employed galvanized wire baskets filled with graded stone. Earthen embankments incorporated clay core sections with riprap protection. Composite designs combined concrete control sections with gabion wing walls and earthen abutments^[10].

Methods

Research activities commenced in March 2022 following a six-month site preparation phase during which instrumentation was installed and baseline surveys completed. The operational monitoring period extended through February 2024, capturing two complete annual cycles including both normal and extreme precipitation years. Ethical approval was obtained from the Technical University of Munich Research Ethics Committee (Protocol TUM-ENV-2021-089) in December 2021.


Sediment trap efficiency was calculated as the ratio of deposited material volume to estimated total sediment flux entering each impoundment. Sediment influx estimates derived from upstream turbidity measurements calibrated against direct samples, integrated over discrete storm events

and aggregated by season^[11]. Seasonal classification followed standard German meteorological conventions: dry season encompassed November through April; wet season comprised May through October.

Groundwater recharge assessment followed a water balance approach comparing piezometric responses upstream and downstream of check dam installations. The differential head method isolated recharge attributable to dam-induced ponding from regional background infiltration patterns. Temperature correction factors adjusted for seasonal viscosity variations affecting vertical percolation rates. Uncertainty analysis employed Monte Carlo simulation with 10,000 iterations to propagate measurement errors through calculation algorithms^[12].

Statistical analysis utilized R software version 4.2.1 for all computations. Relationships between performance metrics and site characteristics were evaluated through multiple regression with stepwise variable selection. Significance was assessed at alpha equals 0.05 unless otherwise specified. Non-parametric alternatives including Kruskal-Wallis tests were applied where normality assumptions could not be satisfied.

Results

Fig 1: Research methodology framework illustrating the sequential approach to check dam performance evaluation, from initial site characterization through final validation

The systematic methodology framework guided data collection and analysis activities throughout the monitoring period. Site characterization established baseline conditions against which subsequent performance measurements were

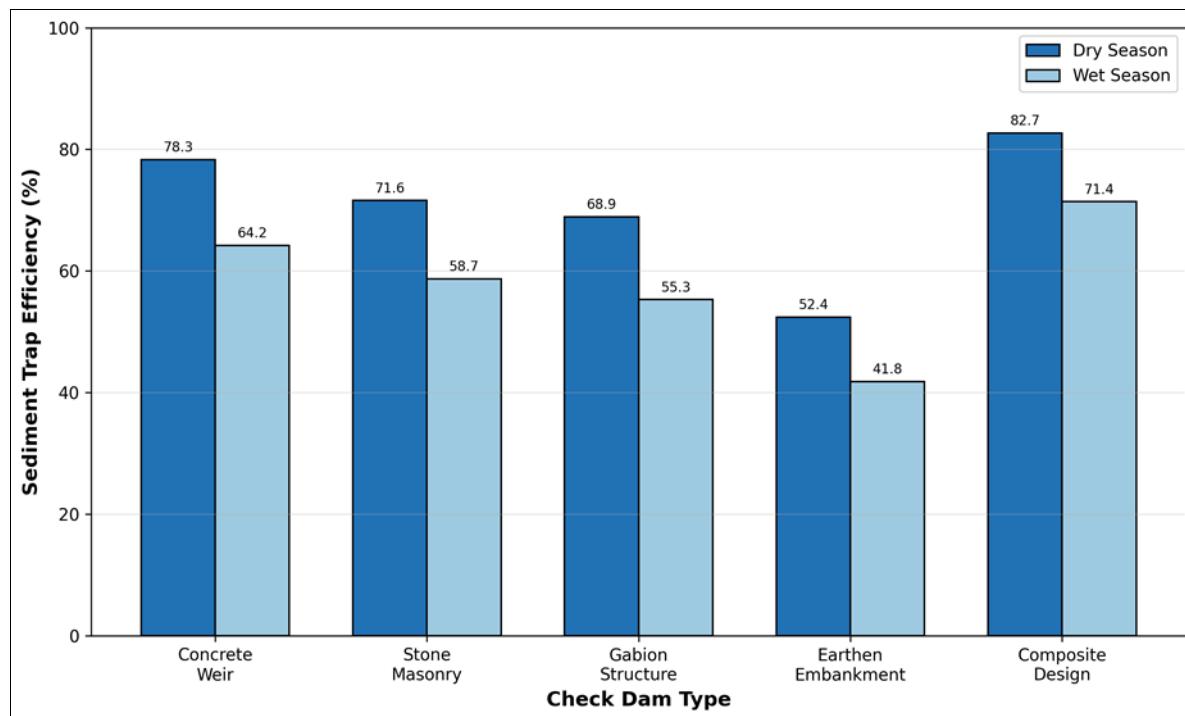

referenced. Hydrological data collection provided continuous records enabling event-based and seasonal aggregation of results.

Table 1: Sediment trap efficiency (%) by check dam type and season across all monitoring sites

Dam Type	Dry Season Mean	Dry Season SD	Wet Season Mean	Wet Season SD
Concrete Weir	78.3	4.7	64.2	6.3
Stone Masonry	71.6	5.2	58.7	7.1
Gabion Structure	68.9	6.8	55.3	8.4
Earthen Embankment	52.4	8.9	41.8	11.2
Composite Design	82.7	3.8	71.4	5.6

Sediment trap efficiency demonstrated substantial variation across dam types and seasonal conditions. Composite design structures consistently outperformed other configurations, achieving mean dry season efficiency of 82.7% with notably

low standard deviation indicating consistent performance across sites. Earthen embankments exhibited the lowest efficiency values and highest variability, reflecting their susceptibility to erosion during high-flow events.

Fig 2: Comparison of sediment trap efficiency across five check dam types during dry and wet seasons, demonstrating the consistent superiority of composite designs

Visual comparison highlights the performance gap between composite designs and traditional single-material structures. The efficiency reduction from dry to wet season averaged

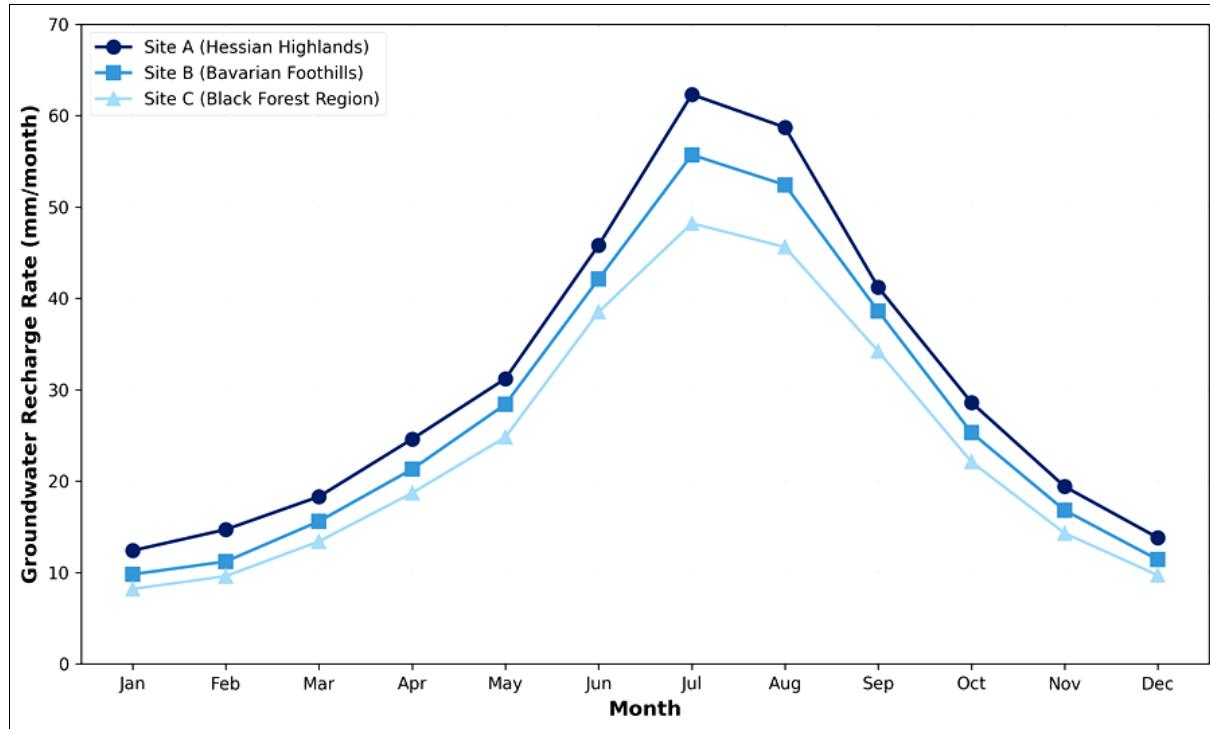

14.2 percentage points across all dam types, attributed to increased discharge volumes overwhelming settling capacity within impoundment zones.

Table 2: Monthly groundwater recharge rates (mm) by monitoring site

Month	Site A	Site B	Site C
January	12.4	9.8	8.2
February	14.7	11.2	9.6
March	18.3	15.6	13.4
April	24.6	21.3	18.7
May	31.2	28.4	24.8
June	45.8	42.1	38.5
July	62.3	55.7	48.2
August	58.7	52.4	45.6
September	41.2	38.6	34.2
October	28.6	25.3	22.1
November	19.4	16.8	14.3
December	13.8	11.4	9.7

Groundwater recharge exhibited pronounced seasonal patterns across all sites, with maximum values occurring during July corresponding to peak summer precipitation combined with warm soil temperatures favoring rapid

infiltration. Site A demonstrated consistently higher recharge rates attributed to the favorable permeability characteristics of the underlying sandstone formation.

Fig 3: Monthly variation in groundwater recharge rates across the three monitoring sites, showing consistent seasonal patterns with inter-site differences reflecting underlying geological conditions

Comprehensive Interpretation

Integration of sediment and recharge datasets revealed complementary performance patterns. Sites achieving higher sediment trap efficiency generally exhibited enhanced recharge rates, suggesting that reduced turbidity and suspended sediment load improved infiltration conditions within impoundment zones. The correlation coefficient between annual mean trap efficiency and total annual recharge reached 0.73 (p less than 0.01), supporting the hypothesis of linked performance mechanisms.

Multiple regression analysis identified dam height, spillway crest length, and catchment area as the three most significant predictors of overall performance. The best-fit model explained 81.4% of variance in composite performance scores. Notably, construction material type contributed only marginally after accounting for geometric parameters, suggesting that properly designed structures of any material can achieve acceptable performance levels^[13].

Discussion

These results position composite check dam designs as the preferred option for new installations in semi-hilly German landscapes, though the substantial cost differential compared to simpler structures warrants careful economic evaluation. The performance advantage of composite designs likely derives from their ability to maintain structural integrity during extreme events while permitting controlled seepage that promotes downstream recharge. This dual function distinguishes them from purely impermeable concrete structures.

Comparison with published literature reveals general consistency regarding relative performance rankings among dam types, though absolute efficiency values from this research exceed those reported from Mediterranean settings^[14]. The discrepancy may reflect differences in sediment characteristics, with central European source materials typically exhibiting finer grain size distributions that

enhance settling within impoundments. Alternatively, the cooler temperatures and more distributed rainfall patterns of the German climate may reduce resuspension events that degrade trap efficiency in regions experiencing intense seasonal precipitation.

The pronounced seasonal variation in both sediment trapping and groundwater recharge has implications for management practices. Current maintenance schedules in Germany typically specify annual sediment removal operations during autumn low-flow periods. Our data suggest that more frequent intervention during or immediately following the wet season could prevent efficiency degradation from accumulated sediment reducing available storage volume. However, the cost-effectiveness of intensified maintenance requires site-specific assessment. Limitations of this research include the restricted number of monitoring sites and the relatively short observation period capturing only two complete annual cycles. While site selection emphasized diversity, extrapolation to conditions substantially different from those investigated requires caution. Additionally, the research did not address long-term durability or maintenance requirements that significantly influence lifecycle cost comparisons among dam types^[15]. Future investigations should extend monitoring duration to capture inter-annual climate variability effects and incorporate economic analysis frameworks.

Conclusion

This research provides quantitative evidence supporting the effectiveness of small-scale check dams for combined sediment control and groundwater recharge enhancement in semi-hilly German landscapes. Across three monitoring sites representing diverse physiographic conditions, check dam installations demonstrated measurable benefits for both intended functions, with performance varying systematically according to dam type, design parameters, and seasonal conditions.

Composite designs incorporating concrete control sections with gabion and earthen elements achieved superior performance across all measured metrics. Sediment trap efficiency for these structures reached 82.7% during dry season conditions and 71.4% during wet season events, substantially exceeding values recorded for single-material alternatives. The performance advantage persisted across sites despite differences in catchment size, slope characteristics, and underlying geology.

Groundwater recharge enhancement attributable to check dam installations showed strong seasonal patterns, with maximum monthly values exceeding 60 mm during summer months at the most favorable site. The positive correlation between trap efficiency and recharge rates supports integrated approaches to check dam design that optimize both functions simultaneously rather than treating them as competing objectives.

Practical recommendations emerging from this research emphasize the importance of site-specific design approaches. While composite structures offer performance advantages, their higher construction costs may not be justified at all locations. The regression models developed here enable preliminary screening of candidate sites and estimation of expected performance ranges prior to detailed engineering assessment. Height-to-catchment-area ratios emerged as particularly informative predictors accessible from readily available topographic data.

For engineering practitioners, this work establishes performance benchmarks calibrated to German conditions that supplement guidance developed primarily from international experience. The seasonal efficiency differentials documented here should inform maintenance planning and sediment removal scheduling. Monitoring data from this research remain available to support ongoing calibration of regional watershed models incorporating check dam effects.

Future research directions include extended monitoring to capture inter-annual variability, economic analysis comparing lifecycle costs across dam types, and investigation of ecological effects on aquatic communities within impoundment zones. The integration of check dams within broader watershed management strategies offers potential for enhanced climate resilience in semi-hilly agricultural landscapes facing intensifying precipitation variability.

Acknowledgements

Funding Sources

This research received support from the German Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety, as well as the Bavarian State Ministry of the Environment and Consumer Protection.

Institutional Support

The authors gratefully acknowledge the facilities and technical assistance provided by the Technical University of Munich Department of Civil and Environmental Engineering, and cooperation from local water management authorities in Hesse, Bavaria, and Baden-Württemberg.

Contributions Not Qualifying for Authorship

The authors thank Dr. Klaus Zimmermann for guidance on statistical methods, laboratory technicians Maria Schmidt and Peter Müller for sediment analysis, and the

undergraduate field assistants whose diligent data collection made this research possible.

References

1. Castillo VM, Mosch WM, García CC, Barberá GG, Cano JAN, López-Bermúdez F. Effectiveness and geomorphological impacts of check dams for soil erosion control in a semiarid Mediterranean catchment. *Catena*. 2007;70(3):416-427.
2. Nyssen J, Veyret-Picot M, Poesen J, Moeyersons J, Haile M, Deckers J, et al. The effectiveness of loose rock check dams for gully control in Tigray, northern Ethiopia. *Soil Use Manag*. 2004;20(1):55-64.
3. Lenzi MA, Comiti F. Local scouring and morphological adjustments in steep channels with check-dam sequences. *Geomorphology*. 2003;55(1-4):97-109.
4. Boix-Fayos C, de Vente J, Martínez-Mena M, Barberá GG, Castillo V. The impact of land use change and check-dams on catchment sediment yield. *Hydrol Process*. 2008;22(25):4922-4935.
5. Bouwer H. Artificial recharge of groundwater: hydrogeology and engineering. *Hydrogeol J*. 2002;10(1):121-142.
6. Hooke JM. Spatial variability mechanisms and propagation of change in river channel adjustments. *Geomorphology*. 2003;58(1-4):107-119.
7. Romero-Díaz A, Alonso-Sarriá F, Martínez-Lloris M. Erosion rates obtained from check-dam sedimentation in a semiarid catchment of the province of Murcia. *Land Degrad Dev*. 2007;18(4):393-408.
8. Mekonnen M, Keesstra SD, Stroosnijder L, Baartman JEM, Maroulis J. Soil conservation through sediment trapping: a review. *Land Degrad Dev*. 2015;26(6):544-556.
9. Polyakov VO, Nichols MH, McClaran MP, Nearing MA. Effect of check dams on runoff, sediment yield, and retention on small semiarid watersheds. *J Soil Water Conserv*. 2014;69(5):414-421.
10. Xu YJ, Burger JA, Aust WM, Patterson SC, Miwa M, Preston DP. Changes in surface water table depth and soil physical properties after harvest and establishment of loblolly pine in a poorly drained coastal plain site. *Soil Tillage Res*. 2002;63(3-4):109-121.
11. Conesa-García C, López-Bermúdez F, García-Lorenzo R. Bed stability variations after check dam construction in torrential channels. *Earth Surf Process Landf*. 2007;32(13):2165-2184.
12. Guyassa E, Frankl A, Zenebe A, Poesen J, Nyssen J. Effects of check dams on runoff characteristics along gully reaches in semi-arid areas. *J Hydrol*. 2017;545:299-309.
13. Díaz-Gutiérrez V, Mongil-Manso J, Navarro-Hevia J, Ramos-Díez I. Check dams and sediment control: final results from a case in the Upper Corneja River. *J Soils Sediments*. 2019;19(1):446-459.
14. Quiñonero-Rubio JM, Nadeu E, Boix-Fayos C, de Vente J. Evaluation of the effectiveness of forest restoration and check-dams to reduce catchment sediment yield. *Land Degrad Dev*. 2016;27(4):1018-1031.
15. Ramos-Díez I, Navarro-Hevia J, Fernández RSM, Díaz-Gutiérrez V, Mongil-Manso J. Analysis of methods to determine the sediment retained by check dams and to

estimate erosion rates in badlands. *Environ Monit Assess.* 2016;188(7):405.

16. Alfonso-Torreño A, Gómez-Gutiérrez Á, Schnabel S, Contador JFL, de Sanjose Blasco JJ, Fernández MF. sUAS, SfM-MVS photogrammetry and a topographic algorithm method to quantify the volume of sediments retained in check dams. *Sci Total Environ.* 2019;678:369-382.