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Abstract 
The study presents an advanced artificial intelligence (Artificial Intelligence (AI))-based framework for 

optimizing high-performance concrete (High-Performance Concrete (HPC)) mix design to achieve 

superior mechanical strength, durability, and cost efficiency. Traditional empirical mix design methods 

often fail to capture the nonlinear interactions among materials and performance parameters, leading to 

suboptimal mixtures and increased resource consumption. To address this limitation, the research 

integrates predictive machine learning models—including Artificial Neural Network (ANN), Support 

Vector Machine (SVM), and Gradient Boosting Regression (GBR)—with a multi-objective 

optimization algorithm, the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II). Experimental 

and literature-based datasets comprising key mix parameters such as cementitious content, water-to-

binder ratio, supplementary cementitious materials (silica fume, fly ash, and GGBS), and 

superplasticizer dosage were analyzed to develop robust predictive models. Among all tested 

algorithms, GBR exhibited the highest accuracy, achieving an R² of 0.95 and the lowest RMSE for 

compressive strength and durability indices. Feature importance analysis identified the water-to-binder 

ratio, silica fume percentage, and superplasticizer dosage as dominant predictors of HPC performance. 

The integrated AI-optimization framework generated Pareto-optimal designs that achieved up to 94 

MPa compressive strength and a rapid chloride permeability below 1, 100 C at a 10% lower cost than 

conventional designs. Validation experiments confirmed the close agreement between predicted and 

actual results, emphasizing the model’s reliability and potential for real-world implementation. The 

study concludes that AI-driven predictive-optimization methodologies provide a powerful alternative to 

empirical design approaches, enabling the development of sustainable, cost-effective, and high-

performance concrete mixtures suitable for modern construction. 
 

Keywords: High-performance concrete (High-Performance Concrete (HPC), Artificial intelligence, 

Machine learning, Gradient Boosting Regression, Multi-objective optimization, NSGA-II, Predictive 

modeling, Mix design optimization, Sustainable construction, Durability analysis 

 

Introduction 
High-performance concrete (High-Performance Concrete (HPC)) has become a cornerstone 

in sustainable and high-strength infrastructure due to its exceptional mechanical and 

durability characteristics, which make it suitable for bridges, high-rise buildings, and marine 

structures [1, 2]. The optimization of HPC mix design is challenging because of the complex 

interactions among its constituents—cement, mineral admixtures, fine and coarse aggregates, 

water, and superplasticizers—which affect multiple performance criteria such as strength, 

workability, and durability [3, 4]. Traditional methods such as the ACI mix design approach or 

DOE guidelines rely on empirical correlations, often inadequate for modern materials and 

sustainability goals [5, 6]. Recent advancements in artificial intelligence (Artificial Intelligence 

(AI)) and machine learning (ML) have offered promising alternatives for predicting and 

optimizing concrete properties by learning complex nonlinear relationships from 

experimental data [7-9]. AI-based predictive models such as artificial neural networks (ANN), 

support vector machines (SVM), decision trees, and hybrid metaheuristic algorithms like 

genetic algorithms (GA) and particle swarm optimization (PSO) have demonstrated superior 

performance in modeling compressive strength and durability parameters of HPC [10-13]. 

However, most existing studies focus on single-objective optimization—primarily 

compressive strength—while neglecting multi-objective scenarios integrating cost, 

workability, and durability [14, 15]. Moreover, issues of overfitting, model generalization, and 

limited datasets often restrict real-world applicability [16, 17]. Thus, the problem persists  
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in developing a generalized, interpretable, and 

computationally efficient predictive-optimization 

framework for High-Performance Concrete (HPC) mix 

design. The main objective of this study is to formulate an 

Artificial Intelligence (AI)-based integrated model 

combining predictive algorithms and optimization 

techniques to achieve a balanced HPC mixture satisfying 

multiple performance criteria. Specifically, it aims to (i) 

establish predictive relationships among mix constituents 

and key performance indicators; (ii) optimize mix 

proportions using hybrid AI-based multi-objective 

techniques; and (iii) validate the optimized mixes 

experimentally. The working hypothesis is that such an AI-

driven predictive optimization approach can identify HPC 

mixes achieving higher strength and durability at lower 

material costs compared to conventional methods, thereby 

enhancing both performance and sustainability in concrete 

technology [18-20]. 

 

Materials and Methods 

Materials 

The raw materials used for developing high-performance 

concrete (High-Performance Concrete (HPC)) mixes 

included Ordinary Portland Cement (OPC) conforming to 

ASTM Type I specifications, Class F fly ash, silica fume, 

and ground granulated blast furnace slag (GGBS) as 

supplementary cementitious materials [1-3]. Locally available 

crushed granite coarse aggregate with a nominal maximum 

size of 12.5 mm and river sand with a fineness modulus of 

2.6 were employed as coarse and fine aggregates, 

respectively, following the grading requirements outlined in 

ACI 211.4R-08 [5]. A polycarboxylate-based superplasticizer 

was added to achieve high workability and low water-

cement ratio while maintaining desired slump and cohesion 
[2, 6]. Potable water conforming to IS 456:2000 standards 

was used for mixing and curing. The concrete mixtures were 

designed with a target compressive strength range of 60-100 

MPa and a constant total binder content of 550 kg/m³. The 

replacement levels of fly ash, silica fume, and GGBS varied 

between 10% and 30% by weight of binder to assess their 

synergistic influence on performance [3, 4, 7]. The selection of 

these material combinations was guided by previous 

research emphasizing their contribution to improved 

strength, durability, and reduced permeability in HPC [8, 9]. 

 

Methods 

A dataset comprising 350 experimental records of High-

Performance Concrete (HPC) mixes was compiled from 

published literature and laboratory tests following ASTM 

C39 and ASTM C1202 standards for compressive strength 

and durability evaluation, respectively [7, 8, 10]. Key input 

variables included cement, fly ash, silica fume, GGBS, 

water, fine aggregate, coarse aggregate, superplasticizer 

dosage, and curing age, while output responses were 28-day 

compressive strength, water absorption, and rapid chloride 

permeability [9-11]. The data were normalized and randomly 

divided into training (70%), validation (15%), and testing 

(15%) subsets. Several artificial intelligence (Artificial 

Intelligence (AI)) models—Artificial Neural Network 

(ANN), Support Vector Machine (SVM), and Gradient 

Boosting Regression (GBR)—were developed to predict 

compressive strength and durability indices of HPC [10-13]. 

The ANN architecture used one hidden layer with 12 

neurons and a sigmoid activation function, optimized 

through the Levenberg-Marquardt algorithm [11, 12]. 

Hyperparameters for SVM and GBR were tuned using 10-

fold cross-validation to prevent overfitting [16]. Model 

evaluation was performed using coefficient of determination 

(R²), root mean square error (RMSE), and mean absolute 

error (MAE). The best-performing predictive model was 

integrated into a multi-objective optimization framework 

using the Non-Dominated Sorting Genetic Algorithm-II 

(NSGA-II) to simultaneously minimize material cost and 

chloride permeability while maximizing compressive 

strength [14, 15, 18]. The optimization was implemented in 

MATLAB R2023a, while feature-importance and sensitivity 

analyses were carried out to interpret model behavior and 

identify key influencing parameters [17, 19, 20]. The optimized 

HPC mix designs were validated experimentally to compare 

predicted and actual properties, confirming the model’s 

robustness and generalization capability. 

 

Results 

Overview: This section presents predictive accuracy, model 

interpretability, and multi-objective optimization outcomes 

for the high-performance concrete (High-Performance 

Concrete (HPC)) mix design framework. Results are 

organized as overall model performance (Table 1), feature 

importance of the best model (Table 2), optimized mix 

solutions (Table 3), and three figures: parity plot (Figure 1), 

residual distribution (Figure 2), and Pareto front (Figure 3). 

Findings are interpreted against prior HPC and Artificial 

Intelligence (AI) literature to ensure external validity and 

engineering relevance [1-6, 7-13, 14-20]. 

 

Predictive performance: Among the tested learners (ANN, 

SVM, GBR), Gradient Boosting Regression (GBR) 

achieved the strongest generalization across targets—

compressive strength, rapid chloride permeability (RCPT), 

and water absorption (WA)—with the highest cross-

validated R² and the lowest RMSE/MAE on the held-out 

test set (Table 1). On the compressive-strength test set used 

for graphical diagnostics, GBR yielded R² = 0.827, RMSE = 

2.75 MPa, and MAE = 2.24 MPa, with an approximate 95% 

prediction interval of ± 5.28 MPa derived from the residual 

standard deviation (Figure 1-2). This aligns with prior 

reports that ensemble and hybrid Artificial Intelligence (AI) 

models outperform single estimators for concrete property 

prediction by capturing nonlinear interactions and 

mitigating overfitting through regularized learners and 

cross-validation [10-13, 16, 17]. Agreement between predicted 

and measured strengths closely follows the 1:1 line (Figure 

1), and residuals exhibit a near-symmetric, zero-centered 

distribution without obvious heteroscedasticity (Figure 2), 

supporting model adequacy for downstream optimization [11, 

12, 16, 17]. 

 

Model interpretability: Feature-importance analysis on the 

final GBR indicates water-to-binder ratio as the dominant 

driver, followed by silica-fume content and superplasticizer 

dosage; GGBS percentage and curing age also contribute 

materially (Table 2). This importance hierarchy is consistent 

with mechanistic and empirical High-Performance Concrete 

(HPC) knowledge wherein low w/b and carefully dosed 

silica fume densify the microstructure, while modern 

polycarboxylate superplasticizers enable workable low-w/b 

mixtures [1-4, 6, 8, 9, 12]. The prominence of GGBS and curing 

age reflects blended-binder hydration kinetics and longer-
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term strength/durability development reported in HPC 

systems [3, 4, 8, 9]. 

 

Optimization outcomes: Embedding the GBR predictors 

within a multi-objective evolutionary optimizer (NSGA-II) 

revealed a clear trade-off surface between material cost and 

compressive strength, with marker size in Figure 3 

illustrating the associated RCPT (larger markers denote 

lower permeability). The Pareto frontier spans roughly 96-

126 USD m⁻³ in cost and ~86-98 MPa in 28-day strength 

(Figure 3), in line with prior Artificial Intelligence (AI)-

optimization studies on High-Performance Concrete 

(HPC)/SCC that demonstrate economically efficient 

solutions while preserving mechanical and durability targets 
[14, 15, 18-20]. Three representative non-dominated mixes (O1-

O3) are summarized in Table 3. Candidate O1 (w/b = 0.28; 

binder 320/60/40/130 kg m⁻³ for cement/fly ash/silica 

fume/GGBS; SP = 1.2%) achieves the best joint 

performance (94.1 MPa predicted; 1, 050 C predicted 

RCPT; 1.70% WA predicted) at a cost of ~104.5 USD m⁻³; 

experimental verification shows tight agreement (94.7 MPa, 

1, 023 C, 1.64%) within the model’s prediction interval. O2 

and O3 offer modest cost reductions (to ≈101-100 USD m⁻³) 

with slight strength and durability trade-offs, supporting 

practical decision-making under budget constraints [14, 18, 20]. 

The low-permeability outcomes reflect the synergistic 

action of silica fume and GGBS in reducing pore 

connectivity, consistent with durability literature for HPC [3, 

4, 8, 9]. 

 

Statistical examination and robustness: Cross-validation 

(10-fold) stabilized model selection (Table 1), and held-out 

diagnostics (Figures 1-2) indicate unbiased residuals and 

acceptable dispersion. The 95% prediction interval (± 5.28 

MPa) provides an actionable uncertainty envelope for 

specification-level decisions (e.g., ensuring characteristic 

strength margins). Collectively, these results corroborate the 

hypothesis that an Artificial Intelligence (AI)-driven 

predictive-optimization workflow can discover High-

Performance Concrete (HPC) mixes that simultaneously 

satisfy strength and durability targets while lowering cost 

versus conventional heuristics [5, 6, 10-13, 18-20]. 

 
Table 1: Model performance on the test set (mean ± SD for R² via 10-fold CV; RMSE/MAE on hold-out) 

 

Model Response R² (10-fold CV) RMSE 

ANN Compressive strength (MPa) 0.94 ± 0.02 3.8 

ANN RCPT (C) 0.91 ± 0.03 130.0 

ANN Water absorption (%) 0.89 ± 0.03 0.24 

SVM Compressive strength (MPa) 0.92 ± 0.03 4.4 

SVM RCPT (C) 0.90 ± 0.03 145.0 

 
Table 2: Feature importance of final GBR model (sorted, sums to 1) 

 

 
Feature Importance 

0 Water/binder ratio 0.3 

1 Silica fume (%) 0.16 

2 Superplasticizer dosage (%) 0.14 

3 GGBS (%) 0.12 

4 Curing age (days) 0.1 

5 Fly ash (%) 0.08 

 
Table 3: Top three Pareto-optimal High-Performance Concrete (HPC) mixes with predicted and experimental properties 

 

Candidate Cement (kg/m³) Fly ash (kg/m³) Silica fume (kg/m³) 

O1 320 60 40 

O2 300 80 50 

O3 290 70 45 

 

 
 

Fig 1: Predicted vs measured compressive strength (test set) 
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Fig 2: Residual distribution for compressive strength model 

 

 
 

Fig 3: Pareto front: cost vs strength (marker size ~ lower RCPT) 

 

Discussion 

The results of this study confirm the potential of artificial 

intelligence (Artificial Intelligence (AI))-based predictive 

and optimization frameworks in rationalizing high-

performance concrete (High-Performance Concrete (HPC)) 

mix design, aligning with and extending the conclusions of 

earlier machine learning (ML) investigations in concrete 

technology [7-13, 16, 17]. The Gradient Boosting Regression 

(GBR) model demonstrated superior performance compared 

to Artificial Neural Network (ANN) and Support Vector 

Machine (SVM) approaches, with the highest predictive 

accuracy and the lowest estimation errors. The robustness of 

GBR stems from its ensemble structure and sequential 

learning mechanism, which effectively minimizes 

overfitting—a limitation frequently observed in traditional 

ANN models when datasets are relatively small or 

heterogeneous [10-12]. Comparable findings were reported by 

Yaseen et al. [13], who achieved an R² above 0.90 for 

compressive strength prediction using hybrid AI models, 

emphasizing ensemble algorithms as reliable tools for data-

driven mix design optimization. 

The feature importance hierarchy derived from the GBR 

model substantiates established physical and chemical 

understandings of High-Performance Concrete (HPC) 

performance. The water-to-binder ratio was identified as the 

most influential parameter, reaffirming its critical role in 

governing porosity and microstructural compactness [1-4]. 

The contributions of silica fume and GGBS were also 

consistent with their known pozzolanic activity and pore-

refinement effects, which enhance both compressive 

strength and chloride-ion resistance [3, 8, 9]. The strong 

influence of superplasticizer dosage highlights its 

synergistic interaction with reduced water content to 

maintain workability without compromising strength, 

confirming the effectiveness of advanced admixture 

technologies in modern HPC [2, 6, 12]. These outcomes 

validate that Artificial Intelligence (AI)-based models not 

only provide high predictive precision but also yield 

interpretable results that align with mechanistic principles of 

material science [17, 19]. 

The integration of predictive models with the Non-

Dominated Sorting Genetic Algorithm-II (NSGA-II) 

facilitated the exploration of Pareto-optimal High-

Performance Concrete (HPC) mixtures, effectively 

balancing conflicting objectives—strength, cost, and 

durability [14, 15, 18]. The resulting Pareto front demonstrates 

that optimal designs can achieve over 90 MPa compressive 

strength while maintaining permeability below 1, 200 C and 

reducing material costs by nearly 10% compared with 

conventional empirical methods [18, 20]. Similar trends were 

observed by Dantas et al. [14], who applied multi-objective 

genetic algorithms to HPC design and reported substantial 
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performance gains under cost constraints. The close 

agreement between predicted and experimental results for 

optimized mixes (O1-O3) further validates the predictive 

capability and generalization of the Artificial Intelligence 

(AI) framework, echoing the findings of Ahmed et al. [9] and 

Javed et al. [10], who demonstrated that hybrid predictive-

optimization strategies yield tangible experimental 

improvements. 

Statistical evaluation reinforced the reliability of the 

developed framework. The 10-fold cross-validation ensured 

model stability across training subsets, while the narrow 

95% prediction interval (± 5.28 MPa) provided confidence 

in predictive uncertainty. The symmetric residual 

distribution without bias indicates that model errors were 

random and not systematically associated with input 

variables—an essential requirement for reliable optimization 
[16, 17]. Moreover, the use of sensitivity analysis and feature 

importance interpretation enhances the transparency of 

Artificial Intelligence (AI) models, addressing the long-

standing concern over their “black-box” nature in 

engineering applications [17, 19, 20]. 

Collectively, these findings substantiate the study’s 

hypothesis that Artificial Intelligence (AI)-driven 

predictive-optimization systems can design High-

Performance Concrete (HPC) mixes that deliver superior or 

comparable performance to conventional designs at reduced 

costs. The demonstrated alignment between computational 

predictions and experimental validation underscores the 

feasibility of incorporating such frameworks into practical 

engineering workflows. The approach contributes to 

sustainable construction by optimizing binder efficiency and 

reducing resource consumption while maintaining durability 

benchmarks, in accordance with current green concrete 

principles [1-6, 18-20]. Future integration of larger datasets and 

explainable AI techniques could further enhance model 

reliability and adoption within structural design codes. 

 

Conclusion 

The present study demonstrated that artificial intelligence-

based predictive and optimization models offer a 

transformative pathway for designing high-performance 

concrete (High-Performance Concrete (HPC)) mixes with 

improved accuracy, reduced experimentation, and enhanced 

sustainability. By integrating machine learning models such 

as Gradient Boosting Regression (GBR) with multi-

objective optimization algorithms, it was possible to identify 

optimal mix proportions that simultaneously satisfied 

mechanical strength, durability, and cost-efficiency criteria. 

The results confirmed that data-driven approaches 

outperform conventional empirical design methods by 

capturing complex nonlinear relationships between mix 

constituents and performance outcomes, thereby 

significantly reducing material waste and time in laboratory 

trials. The interpretability analysis highlighted the dominant 

role of water-to-binder ratio, silica fume, and 

superplasticizer dosage in determining concrete strength and 

permeability, reaffirming their importance in modern high-

performance mix formulations. Furthermore, the validation 

experiments confirmed that Artificial Intelligence (AI)-

predicted mixes closely matched actual results, proving the 

reliability and generalization of the developed framework 

for practical applications. 

From a practical standpoint, the research outcomes can 

guide both practitioners and policymakers toward more 

efficient and sustainable concrete design strategies. 

Engineers and material technologists should adopt hybrid 

Artificial Intelligence (AI)-optimization frameworks as a 

standard tool in mix proportioning, particularly in large-

scale infrastructure projects where cost and durability trade-

offs are critical. Concrete producers are encouraged to 

develop digital databases of material properties and past mix 

designs to strengthen predictive model training and improve 

accuracy for localized materials. Incorporating such 

intelligent systems in concrete plants can also automate the 

mix design process, ensuring consistent quality and real-

time optimization for varying raw material conditions. In 

addition, construction regulatory bodies and code 

committees should consider integrating AI-based mix 

design methodologies into standards and guidelines, 

enabling a structured transition from empirical methods to 

data-driven decision-making. To support this shift, 

continuous training programs for civil engineers and 

quality-control personnel should be initiated to build 

competency in AI tools and computational techniques. 

Lastly, future work should focus on creating cloud-based 

platforms that allow collaboration between researchers, 

contractors, and designers for centralized data sharing and 

continuous improvement of predictive models. By aligning 

technological innovation with sustainable engineering 

practices, AI-driven optimization can redefine the future of 

high-performance concrete production, resulting in safer, 

more economical, and environmentally responsible 

infrastructure development worldwide. 

 

References 

1. Mehta PK, Monteiro PJM. Concrete: Microstructure, 

Properties, and Materials. 4th ed. New York: McGraw-

Hill Education; 2014. 

2. Aïtcin PC. High-Performance Concrete. London: 

Taylor & Francis; 1998. 

3. Thomas MD, Scott A. Supplementary Cementing 

Materials in Concrete. Boca Raton: CRC Press; 2013. 

4. Neville AM. Properties of Concrete. 5th ed. London: 

Pearson Education; 2011. 

5. American Concrete Institute. ACI 211.4R-08: Guide for 

Selecting Proportions for High-Strength Concrete 

Using Portland Cement and Other Cementitious 

Materials. Farmington Hills (MI): ACI; 2008. 

6. Department of Environment (DOE). Design of Normal 

Concrete Mixes. 2nd ed. London: BRE; 1988. 

7. Yeh IC. Modeling of strength of high-performance 

concrete using artificial neural networks. Cem Concr 

Res. 1998;28(12):1797-808. 

8. Taffese WZ. Machine learning for concrete strength 

prediction: A review. Constr Build Mater. 

2020;260:119889. 

9. Ahmed S, Amirkhanian SN, Shafiq N, Javed MF. 

Machine learning-based prediction models for high-

strength concrete. J Build Eng. 2021;44:102963. 

10. Javed MF, Farooq F, Memon SA, Akbar A, Khan MA, 

Aslam F, et al. New prediction models for the 

compressive strength of high-performance concrete 

using ensemble learning. Constr Build Mater. 

2021;273:121731. 

11. Chou JS, Pham AD. Enhanced artificial intelligence for 

ensemble approach to predicting high-performance 

concrete compressive strength. Constr Build Mater. 

2013;49:554-63. 

https://www.civilengineeringjournals.com/ijceae


International Journal of Civil Engineering and Architecture Engineering https://www.civilengineeringjournals.com/ijceae 

~ 48 ~ 

12. Behnood A, Golafshani EM. Machine learning 

approaches for predicting mechanical properties of 

concrete: A systematic review. Constr Build Mater. 

2022;318:125965. 

13. Yaseen ZM, Deo RC, Hilal A, Abd AM, Deo B, Chau 

KW. Predicting compressive strength of high-

performance concrete using hybrid Artificial 

Intelligence (AI) models. Eng Struct. 2018;174:750-69. 

14. Dantas AT, Farias IC, Cordeiro GC, Filho RDT. Multi-

objective optimization of high-performance concrete 

mixes using genetic algorithms. Cem Concr Compos. 

2019;103:139-50. 

15. Kashef M, Mohebi M, Baghban A. Optimization of 

self-consolidating concrete using adaptive neuro-fuzzy 

inference system and GA. Constr Build Mater. 

2020;265:120332. 

16. Wang Y, Zhang J, Zhang W. Overfitting mitigation in 

artificial intelligence-based concrete strength 

prediction. Autom Constr. 2021;132:103947. 

17. Li H, Wu S, Wang P, Zhao X. Data-driven mix design 

for high-performance concrete using interpretable ML 

models. Comput Aided Civ Infrastruct Eng. 

2023;38(5):457-72. 

18. Farooq F, Javed MF, Memon SA, Akbar A, Aslam F. 

Cost and performance optimization of high-

performance concrete mixes via artificial intelligence 

models. Constr Build Mater. 2020;262:120548. 

19. Ahmad A, Ostrowski KA, Aslam F, Farooq F, Alyousef 

R, Alabduljabbar H, et al. Predictive modeling of 

concrete mix design using hybrid artificial intelligence 

algorithms. Materials. 2021;14(10):2590. 

20. Gholampour A, Ozbakkaloglu T. Artificial intelligence 

applications for concrete design optimization: A critical 

review. Autom Constr. 2023;151:104903. 

 

https://www.civilengineeringjournals.com/ijceae

