

E-ISSN: 2707-837X P-ISSN: 2707-8361 IJCEAE 2023; 4(1): 21-37 Received: 16-01-2023 Accepted: 23-02-2023

Dr. M Selvamsagayaradja

Lecturer, Department of Civil Engineering, Motilal Nehru Govt. Polytechnic College, Puducherry, India

Dr. V Murugaiyan

Professor, Department of Civil Engineering, Puducherry Technological University, Puducherry, India

Corresponding Author:

Dr. M Selvamsagayaradja Lecturer, Department of Civil Engineering, Motilal Nehru Govt. Polytechnic College, Puducherry, India

International Journal of Civil Engineering and Architecture Engineering

Geotechnical investigations into the characteristics of cracking and damage analysis of low rise buildings due to shrink-swell potential of Expansive soils

Dr. M Selvamsagayaradja and Dr. V Murugaiyan

DOI: https://doi.org/10.22271/27078361.2023.v4.i1a.27

Abstract

Expansive soils which occur in arid and semi-arid climate regions of the world cause serious problems on Civil Engineering lightly loaded structures. In recent years, the focus of research lies in understanding the influence of Geotechnical characteristics of such problematic soils. Expansive soils cause damage to houses, other buildings, roads, pipelines, and other structures which is more than twice the damage from floods, hurricanes and earthquakes. Only a few studies have been described in the Indian context. Ten low rise buildings from different locations 1 to 10 are selected for Geotechnical investigations and analysis at Pondicherry region of East coast India. Three soil samples from each location under different ground conditions are collected and tested The characteristics studied are initial moisture Content, Dry Density, Liquid Limit and plasticity Index, shrinkage limit, free swell index, natural moisture content, compression index, liquidity index (LI), consistency index (Ic) activity, specific gravity, and cation exchange capacity. The ratio of Plastic Limit to Liquid Limit of the soil varied from 0.49 to 0.71 indicating the characteristic of high plastic clay at depth varying from 1m to 3 m. The author attempts to describe criticality of physical defects in the building system using multi criteria decision analysis approach considering two case studies. The cracks are analysed with respect to crack width, crack orientation, and crack intensity into a relative physical condition with the building systems as alternatives. This technique could be used in monitoring the progression of cracks in the building elements. Preliminary investigation includes visual inspection of cracks, structural damages followed by a detailed assessment of damages along with Non-Destructive Test (NDT). Visual inspection and non-destructive tests indicate the distress found in the case studies can be categorized as partial and complete impairment due to soil behaviour and poor construction materials used in the buildings.

Keywords: Expansive soils, liquid limit and plasticity index, crack width, crack orientation, non-destructive test

Introduction

Engineering problems due to 'expansive soils' have been reported all over the world. They cause damage to structures, affecting heavily on the economy of individuals and the Nation. Plastic clays termed as expansive soils exhibit volume change when exposed to moisture variations. The expansive soils swell if their moisture content increases and they shrink if their moisture content decreases. Clay minerals, such as smectite and montmorillonites absorb water exhibit swelling and shrinking behaviour. As a result, these materials swell, and thus increase in volume, when they get wet and shrink when they dry Engineering problems due to 'expansive soils' have been stated in many countries all over the world. They cause damage to structures, thus affecting heavily on the economy of individuals and the Nation. Expansive soil deposits commonly occur in the arid and semi-arid regions of the world such as: Africa, Australia, Indonesia, India, United States, Israel, Myanmar and some countries in Europe. In India, it is estimated that the area covered by expansive soils is 20% of the total area, which is substantial. Several studies have been carried out to understand swell-shrink behavior of expansive soils and their damages ^[14]. More recently, emphasis has been on understanding the influence of geotechnical characteristics of such soils on the distress of buildings founded over such soils ^[7]. In the Indian context ^[5] have investigated the influence of soil properties among other factors, to understand foundation failure of a residential building. However, such studies are rather scarce, in the Indian context. Expansive soils have been found in several locations in Pondicherry, India. Several buildings located in Pondicherry and founded on such expansive soils have been subjected to distress, in the form

of cracks. It is necessary in the larger interests public at large and for civil engineers to understand the nature of causes, determine the cause/(s) and suggest remedial measures. In this context the present work assumes significance. Ten low rise buildings which are found to have cracks in them have been identified and based on the various test on soil samples collected from the site, an attempt has been made to understand the influence of the geotechnical characteristics of the soil and investigation into the characteristics of cracking and damage analysis due to shrink/swell potential of expansive soils. During wet and dry seasons soil volume varies and thereby causing serious functional and structural problems to buildings, highway pavements and other Engineering buildings. Collapsible soils are known to experience significant volume decrease due to the increase of soil moisture content, without an increase in the in-situ stress level ^[25]. The soils are subject to periods of wetting and drying, the formation of cracks in the soil leading up to the surface can drastically alter the landscape hydrology ^[20]. The incessant changes in volume of the soil can move buildings unevenly thus forming cracks on the building elements.

A general classification of cracks ranges from thin, medium and wide from the crack width less than 1 mm, 1 to 2 mm and more than 2 mm respectively. Initially, the observed cracking would have been due to drying shrinkage ^[6]. The differential settlement which is responsible for several visible cracks in building may be due to short consideration in the foundation design therefore it becomes a challenge for mitigation in the structures built on expansive soils. Evidently cracks are generally perpendicular in action to the route of force, and this action may be partial with the relative stiffness of the building elements ^[23]. Criticality ranking of defects in building systems can be estimated using analytic hierarchy process using physical condition as the predominant criteria in decision analysis tool with various system of the building as alternatives ^[2]. In order to understand the damage process from gradual cracking, to collapse, and further to strengthen the weakened parts from collapse, the stability of the structure becomes the basic factor necessary to understand by using the available software solutions ^[23].

Statement of the problem

The presence of the expansive soils, also known as shrinkswell or swelling soils in Puducherry where clayey soils are predominant has caught many builders unawares. Swelling or expansive clay soils are those that comprise swelling clay minerals such as montmorillonite and have high degree of shrink-swell reversibility with change in moisture content. A large number of structures especially lightweight structures found on these expansive soils have met with widespread problems associated with serviceability performance mainly in the form of cracks or permanent deformation. While very little work has been done to study the extent of expansive soils in Puducherry on one hand, on the other hand the damages in buildings founded on expansive soils have been very poorly documented.

Objectives of the study

The beneficial effects of this paper is, To study the engineering properties of the clay soils with their origin. To study and understand the important soil properties for the soil swell/shrink potential.

To understand the influence of the geotechnical characteristics of the soil on the formations of cracks in the buildings.

To understand the nature of causes, determine the cause/(s) and suggest remedial measures.

The area of focus in respect of the above objectives is to develop an integrated approach to field observation measurement results and laboratory test results in order to make a forecast of the magnitude of cracks in the buildings. The end-result will serve as an essential tool to better understanding of the damages and the cost effective choices in treating damages in the future.

Brief details of case study area

The selected case study area is around Pondicherry nearing 20 Km from the center of the town. Apparently the soil condition of the study area was identified as clay soil of high compressibility. Two distressed building were taken for case study and Salient details of the selected buildings are given in Table 1. Pondicherry is the capital of the union tertiary (UT) of Pondicherry, located in the east cost of India. It is one of the four enclaves constituting the UT of Pondicherry. The temperature of the above town ranges from 28-36°C and north-east monsoon is the primary monsoon which contributes to 80% of the annual rainfall. The average annual rainfall is about 1200mm. Ground water is located at shallow depths within the old town area, where several heritage buildings are located. Low rise buildings (ten in number) were selected such that they are spread all over the Pondicherry region, recently developed areas located far from the old town. Salient details of the selected buildings are given in table 1.and Fig 16a, 16b, 16c and 16d

Methodology

The study was carried out in three stages; reconnaissance survey, building inspection and laboratory testing of soil samples collected from the study areas Fig 15. The reconnaissance survey was aimed at studying the immediate environment of the building in question, and building inspection was carried out to diagnose the distress i.e. Cracks in the buildings based on their location, width, depth, orientation and pattern table. All measurements for the above were based on standard method of building inspection. Soil sample were collected from ten different locations in the near vicinity of buildings at foundation depths ranging from 1-1.5m, and the locations are denoted as L1 to L10. Fig 16. Physical and engineering properties of soil sample were determined adopting relevant IS Codes. The above data is used to interpret the cause of cracks in the buildings.

The study was carried out in the subsequent stages like reconnaissance survey, building inspection and laboratory testing of soil samples collected from the study areas and finally the analysis using all the possible criteria are used in the building systems for evaluating the sources of cracks and their general progression consequences on the building ^[5]. The chronology importance for physical condition on the progression of cracks in buildings of case study L6 and L7 are tabulated in Table 4.5, 6 and 7 respectively. The reconnaissance survey was aimed at studying the close environment of the building in question, and building inspection was carried out to diagnose the distress i.e. Cracks in the buildings based on their location, width, depth, orientation and patterns are measured ^[10]. Soil

samples were collected from three different locations in each case study buildings at depths ranging from 1m to 2m Case study of buildings from locations 1 to 10 denoted as L1 to L10. Physical and engineering properties of soil sample were determined adopting relevant IS Codes.

The criteria used to analyze are PC: Physical condition, and While the building systems considered as the alternatives are; FS = Floor System, WS = Wall System, DW = Doors / Windows, CS = Ceiling System, ES = Electrical system, DS = Drainage system, WF = Wall finishing^[7]. The above data is used to interpret the cause of cracks in the buildings and to identify the importance of defects, intensity of defects and extends of defects.

Result and Discussions

Reconnaissance survey

The preliminary survey conducted indicates that some buildings was constructed on a water logged area and the formation is capped with thinly laminated silt and clay. Detailed Soil Investigation was very essential to reveal the variation of the Soil Strata across the Site ^[23]. There are few matured trees near the building which can influence the initiation of the cracks and all the drainage systems within the building area are not properly lined channels. Therefore, the cracks in the building may be caused by ingress of tree roots into the building and due to movement of water penetrating into the ground due to lack of proper drainage system. Soil samples from two buildings were collected for laboratory testing, which were selected for the study. The preliminary survey indicates that whether the building was constructed on water logged area. The Soil Strata across the Site was very essential for a detailed Soil Investigation ^[15] and the formation is identified to be covered with lightly layered silt and clay. No matured trees found near the building and the drainage systems are concrete lined channels within the building. Therefore the cracks do not originate either by ingress of tree roots or due to lack of proper drainage system in the building.

Building Inspection

The building inspection was carried out to identify and diagnose the cracks about their location (L1 to L10), and orientation pattern. The source of the study begins in the measurement of the length and width of the cracks which were marked and monitored from time to time to find out whether there is any change in the length and width of the cracks for a period of time. In Case study of location L6 and Case Study of location L7 cracks progression were observed as horizontal, vertical and inclined over the alternatives of wall system and ceiling system with the physical condition as criteria used for inspection. In L6 horizontal cracks width 6mm was noticed above the door opening increasing in width and length towards the end of the wall and the vertical cracks extending from the door lintel to the roof slab were identified. In the case study of L7 diagonal cracks are emerging from the corners of the window opening progressing towards the wall joint. The physical condition (PC) scale of the building system is given in Table 3.

Severe cracks are observed throughout the wall at near the corner of the wall in the vertical direction and the cracks are seen to have been initially developed from the floor towards the height of the wall and also in case study of L7 vertical cracks are identified to separate column and walls. In L3, cracks have developed near the junction of columns and

beams. Diagonal cracks have developed from the corner of window sill towards the wall end and vertical cracks have developed from the lintel towards the floor making the wooden frame distorted, in L6, L7, L8 and L9. Fig. 5 to Fig 14 shows the crack sizes and orientation in the buildings taken for inspection. Details of cracks like length, width and orientations in all the buildings are given in Table 9. Laboratory test results

Results of the tests conducted on the disturbed and undisturbed soil samples collected from case studies of buildings location 1 to 10 (L1 to L10) are summarized and given in Table8a and in Table 8b. It is seen that the liquid limit (LL) of soil samples in locations L1 to L10 except L4 is greater than 50 and hence they are classified as 'silt and clays of high compressibility' i.e. 'CH' soil as per IS code which was earlier suggested by ^[11]. From table 12 the soil samples from different locations have plasticity index (PI) greater than 17 and indicate that the soils are highly plastic in nature. The shrinkage limit (SI) value of majority soil samples from different depths of locations L1 to L10 indicate 'high shrinkage'. Further, it is seen that the natural moisture content in is less than five times the liquid limit of the soil specimens in many locations among 10 case study locations. This shows that the clay layer has undergone substantially severe desiccation ^[12], which is responsible for causing distress in buildings in major building locations. The results of the laboratory samples for case study locations L1 to L10 are shown in Table 8a and 8b.

Conclusion

General Discussion

It is seen that the liquid limit (LL) of soil samples in L1 to L10 are greater than 50% except L4 which has LL 37% and hence they are classified as 'silt and clays of high compressibility' i.e. 'CH' soil as per Is code. As the LL of soil samples in L4 is in the range of 35-50, they are classified as silt and clays of medium/intermediate compressibility i.e. 'CI' soil.

The shrinkage limit (Sl) value of L2, L4, L6, L7 and L10 indicate 'high shrinkage', whereas L1, L3, L5, L8 and L9 are found to be low shrinkage.

Further, it is seen that the natural moisture content in locations 1 to 6 and 9 to 10 is less than half the liquid limit of the soil specimens in the locations. This shows that the clay layer has undergone significant desiccation, this responsible for causing distress in buildings in these locations. On the other hand, due to constant water logging the natural moisture content is on the higher side and that is reasonable for causing distress in the building in location-7 and 8.

The bulk densities ranged between 1.7 g/cm3 to 1.9 g/cm3 while the dry densities ranged between 1.32 g/cm3 and 1.82 g/cm3. The higher the unit weight the higher the hardness as well as the swelling potential (swell percent and swell pressure). The soils are mostly in greyish colour which is another indicator of the presence of expansive minerals. In addition to collecting information from visual inspections, field and laboratory investigations carried out offered very interesting results. All the tested samples satisfied the expansive soil criteria and have potential expansion rating from 'high' to 'very high'. The soils contain high clay content, high liquid limits (85.20% to 37%), plasticity index (18.6% to 43.23%).

Visual examination of the buildings in the study area revealed some interesting discovery. Damages in lightweight structures were mostly related to the absence of full structural design (non-engineered properties) triggered by the presence of expansive soils.

Overall conclusions

The existence of expansive soils could damage foundations of above-ground structures. It is not therefore surprising that the side effect of expansive soils is ignored in both design and construction of structures. This research project has helped identify the expansive soils and associated problems in the area. The positive outcomes of this research have the potential to improve the safety of the communities by assisting homeowners in promoting proper design, positive construction and maintenance altitudes. Most of the damages caused by expansive soils are due to the communities have insufficient knowledge about the features and behaviour of the expansive soils. Based on field data collected, and laboratory test results and visual observations of cracks in buildings in location 1 to 10, it can be concluded that:

- i) The distress in buildings at locations L1 to L6 and L9 and L10 is attributed to the presence of CH/CI type of soil and have undergone significant desiccation.
- ii) The distress in building at locations L7 and L81 is attributed to constant water logging over CH type of soil.
- iii) The cracks found to be aesthetic cracks in the location L1, L2, L4, L9 and L10 and all other locations exhibit serviceability cracks in the structure at the moderated state.
- iv) The impact of the geotechnical characteristics over the identified cracks denotes the effects from aesthetic to moderate attributed to serviceability of the cracks.
- v) The relationship of Ll%, PI% and FSI% with depth of samples collected show great influence on the distress of the buildings. Fig 18 to Fig 21
- vi) Soil investigations prior to construction are not carried out adequately, thus footings and slabs are placed directly on the expansive soils.

vii) The flooring system, terrace and the beams and columns are having high degree of chronology in the physical condition analysed from the cracks in the case study L6, as well the walling and flooring system in case study L7. Majority of cracks are moderate and come under serviceability conditions in both the cases

Recommendations

Many investigators ^[1, 5, 14, 18, 19] have suggested measures to mitigate potential problems associated with expansive soils. For the study at hand, the recommendations summarized here below have been single out based on the results of visual observations and field and laboratory investigations:

- 1. Control the shrink-swell behaviour through the following alternatives;
- a) Replace existing expansive soil with non-expansive soil.
- b) Maintain a constant moisture content.
- c) Improve the expansive soils by stabilization.
- 2. Tolerate the damage.
- 3. Underpinning the existing foundations.
- 4. Repair the cracked walls.
- 5. Enforcement of construction industry regulations.

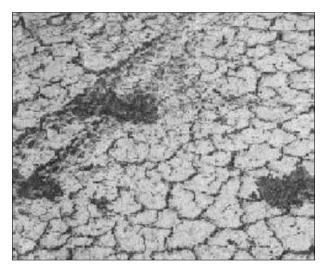


Fig 1: Expansive soil with cracks

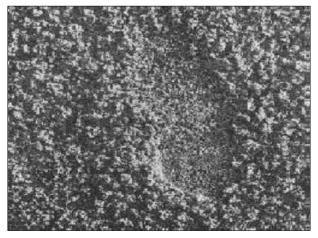


Fig 2: Expansive soil with popcorn texture

Identification of expansive soil from (Masoumeh Mokhtari, Masoud Dehghani. 2012 vol.17, Bund. R).

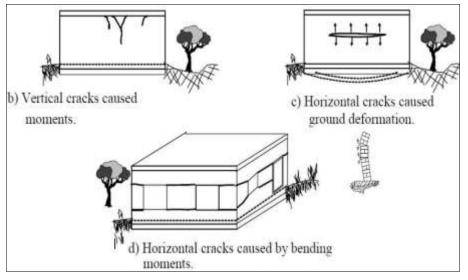


Fig 3: Damage mechanism of expansive soils (Hussein Elarabi,)

Fig 4: Typical excavation pit Building inspection

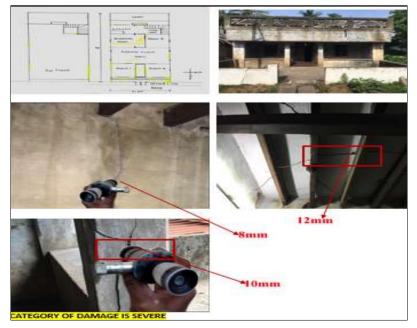


Fig 5: Cracks in walls, ceilng, pillar of the case study in location L1

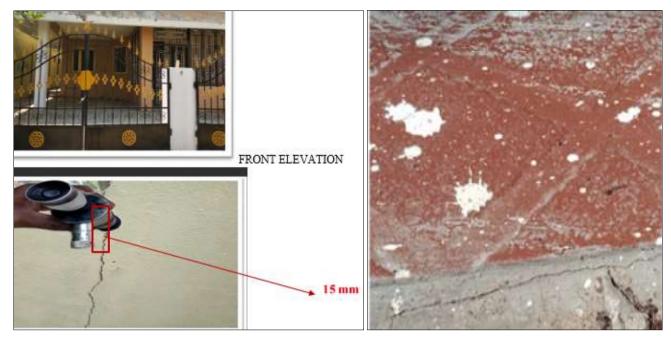


Fig 6: location 2, settlement of 20 mm was observed near the Main Gate of the residence and cracks in the wall



Fig 7: Location L 3, crack separates the wall and column Fig 8 location L 4, longitudinal cracks in the main wall

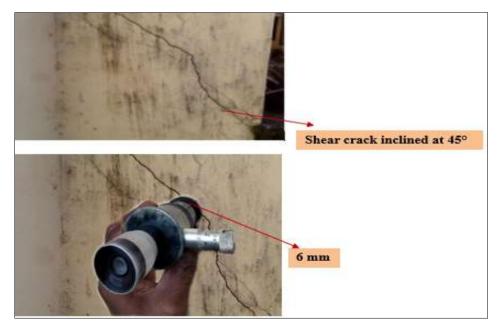


Fig 8: Location L 5, longitudinal Shear crack length >1000 mm, crack width= 6 mm.

International Journal of Civil Engineering and Architecture Engineering

http://www.civilengineeringjournals.com/ijceae

Fig 9: location L 6, Wall separation 40 mm.from column

Fig 10: Location L 7, Crack width 70 mm

Fig 11: Location L 8, Crack width 25 mm and 1000 mm length

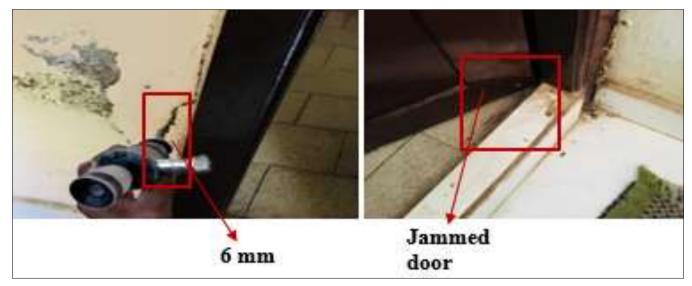


Fig 12: Location L 9, Crack width 6 mm near wall and the door is jammed.

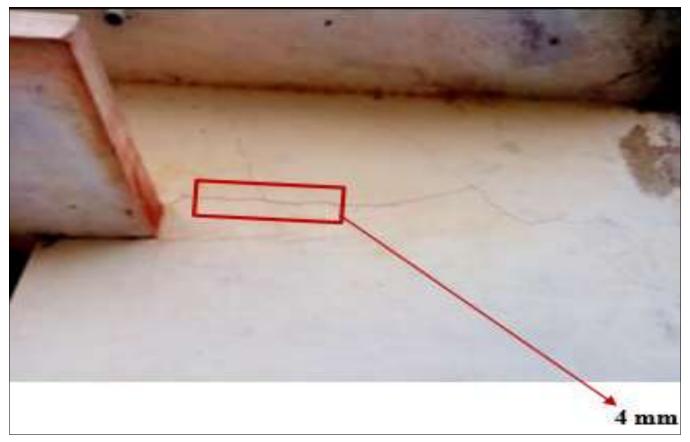


Fig 13: Location L 10 Horizontal crack 1800 mm length, crack width = 4mm

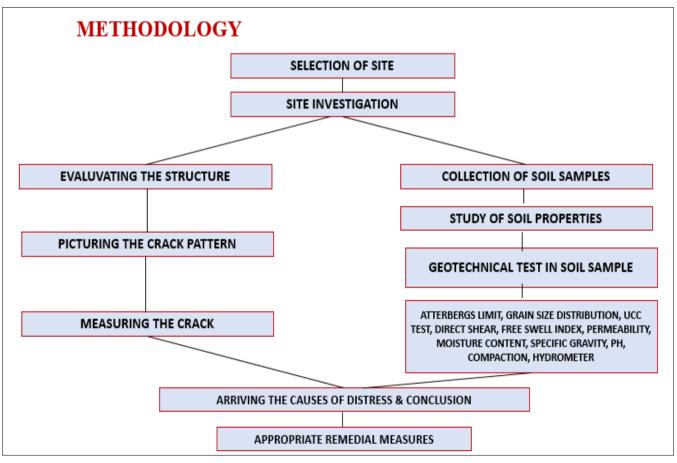


Fig 14: Methodology chart

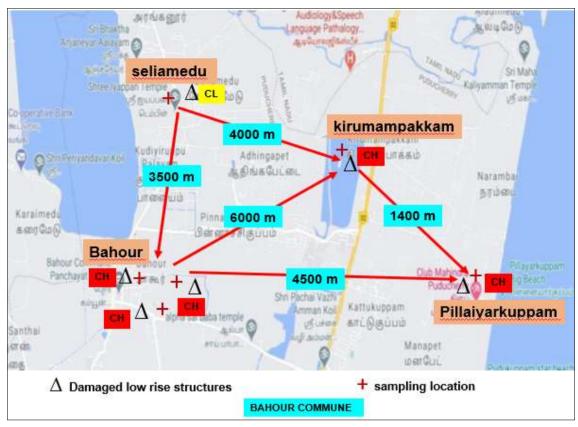


Fig 15a: Geographic locations of case study L1 to L3

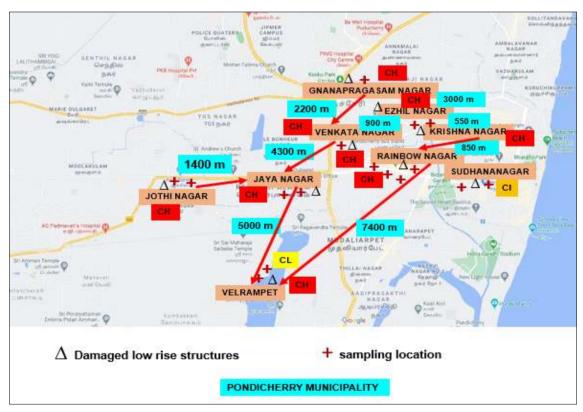


Fig 15b: Geographic locations of case study L7 to L10

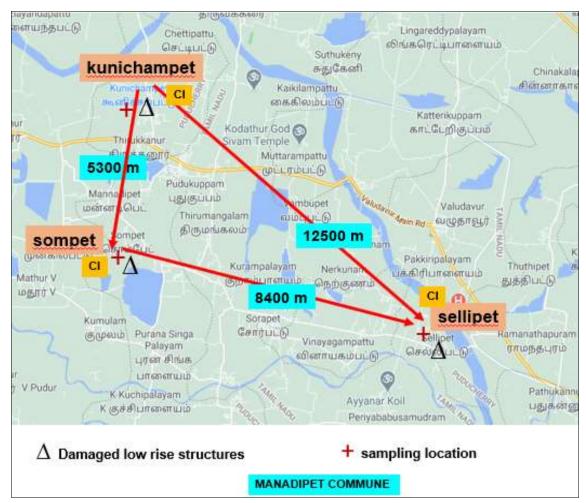


Fig 15c: Geographic locations of case study L4

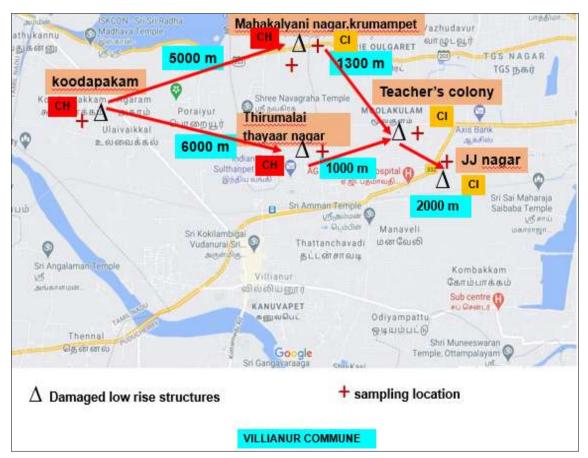


Fig 15d: Geographic locations of case study L5

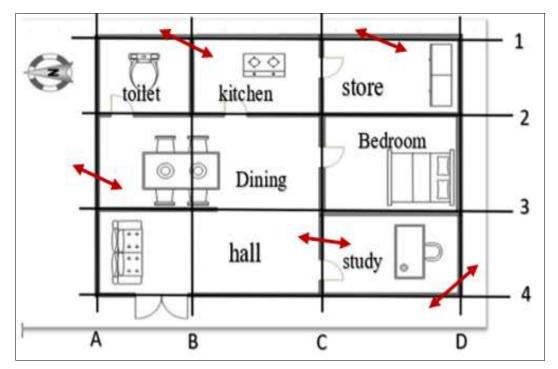


Fig 16: Plan with mark of distress in walls of Ground Floor in location L2

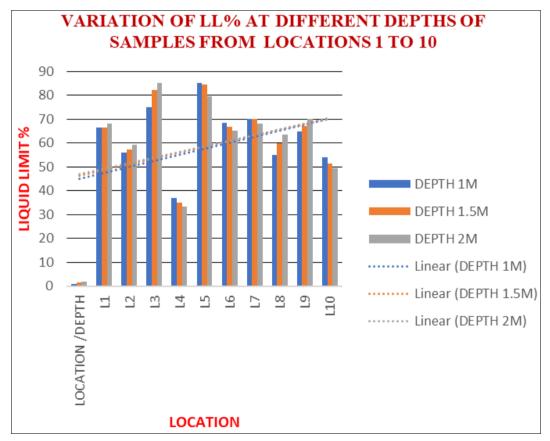
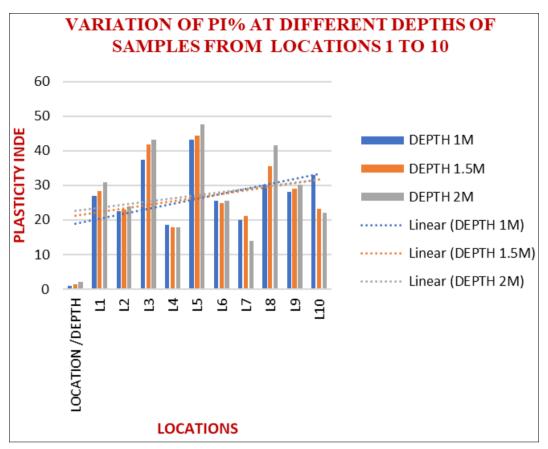
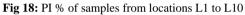
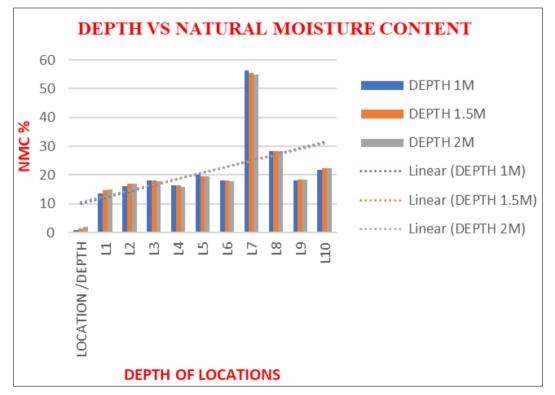





Fig 17: LL% of samples from locations L1 to L10

Fig 19: Variation of water content with depth.

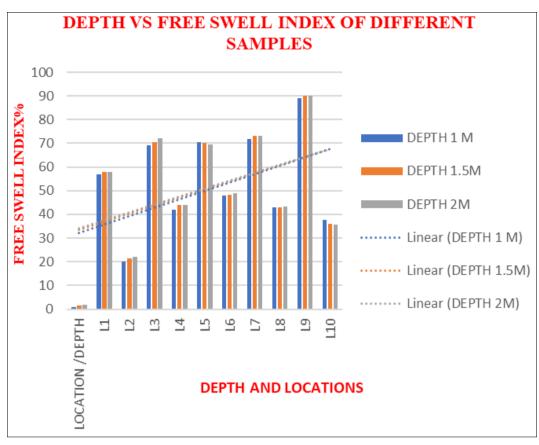


Fig 20: Percent Free swell versus depth for all soil specimens from different locations of various depth

Table 1: Salient details of selected building from case study

S. No	Description	Bahour	Kirumampakkam	Pillayarkuppam	Sellipet	Koodapakkam	Thondamanatham	Ezhil nagar	Krishna nagar	Rainbow nagar	Venkata nagar
1	Location	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10
2	Site condition	Dry	Dry	Dry	Dry	wet	Wet and dry	Wet and dry	Wet and dry	Wet and dry	dry
3	Soil type	Clay soil	Clay soil	Clay soil	Silty clay	High plastic clay soil	High Plastic clay soil	Clayey soil	Clayey soil	Clayey soil	Clayey soil
4	Type of property	Private	Private	Private	private	private Public school building		private	private	private	private
5	Age of property	29 years	8 years	28 years	15 years	20 years	20 years 23 years		20 years	12 years	10 years
6	Construction date	1988	2012	1990	2006	2000	1995	1993	2000	2007	2005
7	Use of structure	Residential	Residential	Commercial	Residential	Residential	Residential Public R		Residential	Residential	Residential
8	Type of structure	Masonry	Framed	Framed	Framed	Framed			framed	Framed	Framed
9	Surrounding activates especially the hazardous one	Sewer line in front of the house	Waterlogged area due to its low lying profile. Large, deep rooted trees were also observed in the vicinity	Horizontal crack and vertical crack below the lintel and skill levels. building has no plinth beam soil present were highly plastic	Movement of water penetrating into the ground due to lack of proper drainage system.	Moderate to severe degree of visible damages cracks were originating from floor towards the roof lack of adequate soil investigation	Uneven settlements of floor jammed doors and grill twisted placed in the wall	Water get stagnated around the building. high swell and shrink behaviour	Diagonal Cracks with a stair-step pattern in external walls.	Cracks moderately affect the serviceability	Horizontal cracks developed between the ground slab and the external substructure wall
10	Any major repair carried out	Cracks have been cover with mortar	Cracks have been covered with mortar	Cracks have been plastered	Cracks everywhere in external walls of varying length plastered	Building undergone significant settlement. major repair works carried out	ilding ergone ificant nt. major r works		For every two years cracks are being plastered	Diagonal cracks in windows are plastered	For every two years cracks are being plastered
11	Depth of foundation	1.5 m from EGL	1.2 m from EGL	1.5m from EGL	1.20 m from EGL	1.20 m from EGL	1.5m from EGL	1.5 m from EGL	3.0 m from EGL	1.50 m	1.20 m
12	footing	Masonry wall footing	Isolatedcolumn footing	Isolatedcolumn footing	Isolated column footing	Isolated column footing	Isolated and combined column footing	Isolated column footing	Pile foundation	Isolated column footing	Isolated column footing
13	No. of storeys	Single storey (GF)	Single storey (GF)	Single storey (GF)	Single storey (GF)	GF+1 storey	GF+1 storey	GF+1 storey	Single storey (GF)	Single storey (GF)	GF+1 storey

Table 2: Cates	orisation an	d classification	based on	width of cracks
I abie II Cale,	or ibution an	a classification	oubea on	maan or cracko

Crack width (mm)	Category	Classification			
Less than 2 mm	Very slight	Aesthetic			
2 mm to 5 mm	Slight	Aesthetic			
5 mm to 15 mm	Moderate	Serviceability			
15 mm to 25 mm	Severe	Serviceability			
Over 25 mm	Very severe	Stability			

Based on width of cracks identified from the case study, the categorisation and classification of visible damages can be

stated based on the literature support, by Burland *et al.* (1997) $^{[11]}$.

Table 3: Physical of	condition (pc)	scale of the	building system
----------------------	----------------	--------------	-----------------

Sl. No.	Chronology Value	Physical condition
1	Repair is not needed	structural element is free from any visible defects
2	Repair is needed within the period of 1-2 years	Structural element is structurally functional but need minor repair
3	Repair is needed within the period of 6-12 months	Structural element is functionally sound but require urgent repair
4	Repair is needed within the period of 1-6 moths	Serious defect, structural element can function but not to an acceptable standard
5	Repair is required immediately	Structural member is not functioning at all.

The physical condition (pc) scale of the building system is based on the literature support, by Dabo Baba Hammad *et al.* (2014)^[4].

Location of our ob	Short term ins	pection (3	months) in	n progressio	n of crack	s-case stu	ly of 16	Approxii	nate length (MM)	of cracks
Location of crack	1 day (mm)	15 days (mm)	30 days (mm)	45 days (mm)	60 days (mm)	75 days (mm)	90 days (mm)	1 day (mm)	45 days (mm)	90 days (mm)
Walling system	50	52	56	60	64	66	72	3600	3608	3614
Doors and windows	16	20	24	28	30	32	35	950	958	962
Beams and column	40	41	45	48	50	52	60	700	705	712
Floor system	20	29	30	36	39	40	45	2700	2742	2780

Table 5: Chronology importance for physical condition on the progression of 16

Physical		Locatio	on of cracks in the	critical location of a	alternate building	system (16)	
condition criteria	Floor system	Walling system	Doors and windows	Ceiling system	Electrical system	Terrace	Beams and column
Approximate width of cracks (mm)	45	72	32	17	5	25	60
Activity of crack	active progression	Passive with slight progression	active	passive	passive	Passive with slight progression	Passive with slight progression
Physical condition (PC)	Structural member is not functioning at all.	Functionally sound but require urgent repair	functionally sound but require urgent repair	an acceptable	structurally functional but need minor repair	Serious defect, can function but not to an acceptable standard	Serious defect, can function but not to an acceptable standard.
Chronology importance	Repair is required immediately	Repair is needed within the period of 6-12 months	Repair is needed within the period of 6-12 months	Repair is needed within the period of 1-6 months	Repair is needed within the period of 1-2 years	Repair is needed within the period of 1-6 months	Repair is needed within the period of 1-6 months

Table 6: Progression details of cracks in buildings in case study of 17

Location of crack	Shor	•t term insp	ection (3 m	ionths) in study of l'	1 0	on of cracl	ks-case	Approxi	(mm) (mm) 2608 2618			
Location of crack	1 day	15 days	30 days	45 days	60 days	75 days	90 days	1 day	45 days	90 days		
	(mm)	(mm)	(mm)	(mm)	(mm)	mm)	(mm)	(mm)	(mm)	(mm)		
Walling system	70	75	80	84	88	90	95	2600	2608	2618		
Doors and windows	7	8	8	10	11	11	12	1050	1058	1072		
Beams and column	30	35	36	36	40	40	41	600	615	618		
Floor system	15	18	18	20	22	25	30	2700	2750	2755		

Table 7: Chronology importance for physical condition on the progression of cracks in buildings of case study of 17

Physical Condition	Location of cracks in the critical location of alternate building system (l6)									
Criteria	Floor system	Walling system	Doors and windows	Ceiling system	Electrical system	Terrace	Beams and column			
Approximate width of cracks (mm)	30	95	12	15	5	25	41			
Activity of crack	Active progression	Active	Active	Passive	Passive	Passive with slight	Passive with slight progression			

					progression	
Physical condition (PC)	Functionally sound but require urgent repair.	Functionally sound but require urgent repair	Functionally not sound but require urgent repair	Structurally functional but need minor repair	Serious defect, can function but not to an acceptable standard	Serious defect, can function but not to an acceptable standard
	within the period	Repair is needed within the period of 6-12 months	Repair is needed within the period of 6-12 months	within the period of 1-2 years	Repair is needed within the period of 1-6 months	Repair is needed within the period of 1- 6 months

Table 8a: Results of the laboratory test on soil samples from different study locations from 11 to 110

Location/Samples	Depth (m)	LL %	PL %	PI %	SL %	Clay %	pН	G	MDD KN/m ³	OMC%	NMC%	Soil classification
L1 S1-Bahour	1.00		39.50					2.66	18.39	15.14	13.51	СН
L1 S2	1.50		38.00					2.52	18.20	15.10	14.75	
L1 S3	2.00	68.00	37.00	31.00	3.90	67.00	7.40	2.60	17.90	14.90	14.90	
L2 S1-Kirumampakkam	1.00	56.00	33.41					2.60	17.73	18.19	16.25	CH
L2 S2	1.50	57.25	34.20	23.05	27.10	66.40	7.00	2.55	17.80	17.90	17.00	
L2 S3	2.00	59.25	35.25	24.00	27.10	68.00	7.15	2.62	18.00	18.00	17.00	
L3 S1-Pillayarkuppam	1.00	75.00	37.50				7.20		13.10	32.00	18.20	CH
L3S2	1.50	82.30	40.50				7.40		12.89	31.25	18.20	
L3S3	2.00	85.20	41.97	43.23	8.13		7.40		13.19	32.30	18.00	
L4 S1-Sellipet	1.00	37.00	18.40	18.60	15.20	70.30	7.15	2.33	17.35	16.70	16.50	CI
L4 S2	1.50	35.00	17.20				7.10		17.20	16.40	16.50	
L4 S3	2.00	33.50	15.50			65.80	6.85	2.38	16.85	15.25	16.00	
L5 S1-Koodapakkam	1.00	85.20	42.00	43.20	8.10	73.52	7.00	2.20	13.19	32.30	20.15	СН
L5 S2	1.50	84.50	40.20	44.30	8.00	70.80	7.15	2.35	13.10	31.85	19.50	
L5 S3	2.00	79.50	31.80	47.70	7.95	66.20	7.05	2.30	12.89	31.60	19.50	
L6 S1-Thondamanatham	1.00	68.35	42.72	25.63	12.80	74.30	7.25	2.60	14.20	22.15	18.10	CH
L6 S2	1.50	66.80	42.00				7.10		14.10	22.05	18.10	
L6 S3	2.00	65.20	39.70	25.50	12.28	70.90	7.15	2.55	13.89	21.45	17.90	
L7 S1-Ezhil Nagar	1.00	70.00	49.50	20.50	15.40	65.20	7.31	2.58	15.94	24.25	56.20	СН
L7 S2	1.50	70.00	48.90	21.10	13.50	64.81	7.25	2.64	15.94	24.20	55.50	
L7 S3	2.00	68.00	54.00	14.00	10.01	64.81	7.33	2.66	15.85	23.40	55.00	
L8 S1-Krishna Nagar	1.00	55.00	24.90	30.10	8.70	72.00	7.10	2.22	14.23	35.80	28.20	СН
L8 S2	1.50	59.80	24.25	35.55	8.10	74.50	7.05	2.22	14.85	35.80	28.20	
L8 S3	2.00	63.50	22.00	41.50	7.80	78.50	7.10	2.30	15.05	36.15	28.35	
L9 S1-Rainbow Nagar	1.00	65.00	37.00	28.00	4.25	72.00	6.95	2.70	15.10	17.50	18.20	СН
L9 S2	1.50	67.25	38.10	29.15	3.10	76.30	7.02	2.68	15.24	17.25	18.50	
L9 S3	2.00	70.00	39.86	30.14	2.00	80.24	6.95	2.71	15.59	17.68	18.50	
L10 S1-Venkatanagar	1.00	54.00	20.92		10.00	70.35	7.20	2.61	15.80	23.40	21.85	СН
L10 S2	1.50		28.15			66.80	7.10	2.59	15.40	23.10	22.30	
L10 S3	2.00	49.50	27.50	22.00	9.20	64.50	7.20	2.62	15.24	22.95	22.30	

Table 8b: Results of the laboratory test of free swell index of soil samples from different study locations from 11 to 110

Depth/locations	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10
1.0 m	57	20	69	42	70.6	47.8	71.8	42.9	89	37.5
1.5m	58	21.5	70.6	44	70	48.2	73	43	90	36
2.0 m	58	22	72	44	69.5	49	73	43.4	90	35.8

Table 9: Classification details of cracks in case study buildings from 11 to 110

Location	Most affected building elements	Approximate length of cracks and details	Approximate width of cracks (mm)	Category	Classification
L1	Floor, walls, lintels	800 mm	5	Slight	Aesthetic
L2	Walls and floors	1200 mm	3	Slight	Aesthetic
L3	Walls., floors, column separating from wall, terrace	From the bottom towards the roof (External walls) 1800 mm in length	15	Moderate	Serviceability
L4	Walls. Floors	. 850 mm	5	Slight	Aesthetic
L5	Walls., floors, column separating from wall, terrace	.800 mm	6.5	moderate	Serviceability
L6	Walls, floor, lintels grill work bend in opening	Diagonal cracks of length 2000 mm	25	Severe	Serviceability
L7	External walls, lintel and sunshade, window edges, corner of the wall is affected, roof get exposed reinforcement	Diagonal cracks of length 800 mm	12	Moderate	Serviceability
L8	Floor, window edges, external walls	From the bottom	6	Moderate	Serviceability

		towards the roof 720 mm			
L9	External walls	Numerous cracks of 740 mm length	5	Slight	Aesthetic
L10	External walls, cracks from lintel to roof	600 mm	5	Slight	Aesthetic

Table 10: IS Classification based on liquid limit (IS 1498)

Liquid limit	Description
Less than 35%	Low compressibility
35% -50%	Medium compressibility
Greater than 50%	High compressibility

Table 11: IS Classification based on the plasticity index (IS 1498)

Plasticity index	Soil description
0	Non plastic
Less than 7	Low plastic
7-17	Medium plastic
Greater than 17	Highly plastic

 Table 12: IS Classification based on liquidity and consistency index (IS 1498)

Consistency index	Liquidity index	Description
Less than 0	Greater than 1	Liquid
0-0.25	0.75-1.0	Very soft
0.25-0.5	0.5-0.75	Soft
0.5-0.75	0.25-0.5	Medium soft
0.75-1.0	0-0.25	Stiff
Greater than 1	Less than 0	Very stiff or hard

Table 13: Soil expansivity prediction by liquid limit (IS 1498)

Degree of expansion	Liquid limit (%)
Low	20-35
Medium	35-50
High	50-70
Very high	70-90

Table 14: Soil expansivity prediction by plasticity index (IS 1498)

Degree of expansion	Plasticity index (%)
Low	Less than 12
Medium	12-23
High	23-45
Very high	Greater than 32

Table 15: Typical values of unconfined compressive strength IS (1498)

Consistency of clay	UCC (kN/m2)
Very soft	Less than 25
Soft	25-50
Medium	50-100
Stiff	100-200
Very stiff	200-400
Hard	Greater than 400

 Table 16: Comparison of compressive strength to the difference of Crack Width within 3 months of inspection and monitoring at location

 L2

No.	location	Crack width difference	Compressive strength of concrete(MPa)		
140.	location	(mm)	Inspection (July 2018)	Monitored (October 2018)	
1.	Grid along B1-kitchen and toilet wall	2	30	29	
2.	Grid along 11-store wall	3	32	31	
3.	Grid along AA external wall in dining	5	34	32	
4.	Grid along CC-wall between hall and study	7	34	33	
5.	Grid along D4-study wall	4	32	29	

Table 17: Swelling potential prediction in soils [3]

Parameter	Reference		Degro	ee of expansion	
rarameter	Kelerence	Low	Medium	High	Very high
LL%	Chen, 1975	<30	30-40	40-60	>60
PI%	Chen, 1975		10-35	20-55	>55
	Holtz and Gibbs, 1956	<20	12-34	23-45	>45
Clay content%	Holtz and Gibbs, 1956	<17	12-27	18-37	>27
Clay content%	Holtz, 1959	-	13-23	20-31	>28
Swell percent%	Thomas <i>et al.</i> , 2000	<3.0	3.0-6.0	6.0-9.0	>9.0
Swell pressure (kPa)	Thomas <i>et al.</i> , 2000	<81	81-153	153-225	>225
Activity	Activity Skempton, 1953		-	0.75-1.25	>1.25

Table 18: Expansive soil classification based on FSI (IS 1498)

Locations	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10
FSI %	58.00	19.80	70.60	42.50	60.00	50.25	73.00	61.00	90.00	34.40
Swell Potential	М	М	М	L	М	М	L	М	М	L

Locations	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10
LL %	68.00	59.25	85.20	33.50	79.50	65.20	68.00	63.50	70.00	49.50
Degree of Expansion										
IS 1498	Н	Н	VH	М	VH	Н	Н	Н	Н	М
Chen	VH	Н	VH	М	VH	VH	VH	VH	VH	М
Holtz and Gibbs, 1956	Н	Н	VH	Н	VH	Н	Н	Н	Н	Н

Table 19: Soil expansivity prediction by LL

Locations	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10
PI %	31.00	24.00	43.23	18.00	47.70	25.50	14.00	41.50	30.14	22.00
Degree of Expansion	51.00	24.00	45.25	16.00	47.70	25.50	14.00	41.50	50.14	22.00
IS 1498	Н	Н	VH	М	VH	Н	М	Н	Н	М
Chen	VH	Н	VH	М	VH	VH	VH	VH	VH	М
Holtz and Gibbs, 1956	Н	М	VH	М	VH	Н	М	VH	Н	М

Table 20: Soil expansivity prediction by PI

M= Medium, H= High, VH= Very High

Data availability statement

All data, models, and code generated or used during the study appear in the submitted article.

References

- Agbede OA, Jatau ND, Oluokun GO, Akinniyi BD. Geotechnical Investigation into the Causes of Cracks in Building: A Case Study of Dr. Egbogha Building, University of Ibadan, Nigeria. International Journal of Engineering Science Invention ISSN (Online). 2015, 2319-6734, ISSN (Print): 2319-6726
- Puppala AJ, Wejrungsikul T, Puljan V, Manosuthikij T. Measurements ofShrinkage Induced Pressure (SIP) in Unsaturated Expansive Clays, Geotechnical Engineering Journal of the Seags & Agssea, 2012 Mar, 43(1). ISSN 0046-5828.
- 3. Beni Lew. Structure Damage Due to Expansive Soils: a Case Study, Electronic journal of Geotechnical Engineering. (EJGE). 2010, 15 [2010], Bund. M 1318
- Dabo Baba Hammad, Nasir Shafiq, Muhd Fadhil Nuruddin. Criticality Index of Building Systems Using Multi-Criteria Decision Analysis Technique., MATEC Web of Conferences. 2014;15:01018. DOI: 10.1051/matecconf/20141501018, published by EDP Sciences, 2014
- Nagarajan D, Premalatha K. Investigation of Foundation Failure of a residential building- A case study, International Journal of Engineering research and Applications, (IJERA); 2014, April. (ISSM: 2248-9622).
- Ehiorobo JO, Izinyon OC, Ogirigbo RO. Measurement and Documentation for Structural Intergrity Assessment of In-Service Building at Risk, TS07E - Engineering Surveying, 2013, 1-6638.
- Yunusa GH, Hamza U, Abdukfatah AV, Suleiman A. Geotechnical Investigation into the Causes of Cracks in Building: A Case study, European Journal of Geotechnical Engineering. 2013;18:2823-2833.
- 8. Hai-jun Lu, Wei He, Zhu-wei Liao, Wei Chen. The Swelling, Shrinkage and Cracking Properties of Compacted Clay, Electronic journal of geotechnical engineering (EJGE), 2013, 18.
- Hervé Péron, Tomasz Hueckel, Lyesse Laloui. An Improved Volume Measurement for Determining Soil Water Retention Curves, Geotechnical Testing Journal, 2007, 30(1). Paper ID GTJ100167.
- Charles JA, Skinner HD. Settlement and tilt of low rise buildings. Proceedings of the Institution of Civil Engineers Geotechnical Engineering 157 Apr 2004 Issue GE2, 2004, 65-75.
- 11. Burland JB, Broms BB, De Mello VFB. Behaviour of foundation and structures: State-of-the art report, International Conference on soil mechanics and foundation engineering, Japanese geotechnical society, Tokyo. 1997;(2):495-548.
- 12. Laefer Debra F, Gannon Jane, Deely Elaine. Reliability of crack detection for baseline condition assessments, Journal of Infrastructure Systems. 2010;16(2):129-137.ASCE.

- 13. Rivera LD, Morgan CLS, Kishné AS, McInnes KJ, Hallmark CT, Hutchison KM. Estimating Crack Volume in Two Shrink-Swell Soils. Soil & Crop Sciences Department; c2006.
- 14. Maitham Hamad. Determination of Shrinkage Crack Risks in Industrial Concrete Floors through Analyzing Material tests. Structural Engineering and Bridges, 2012, ISSN 1103-4297.
- Masoumeh Mokhtari, Masoud Dehghani. Swell-Shrink Behavior of Expansive Soils, Damage and Control. Electronic journal of Geotechnical Engineering. (EJGE), 2012, Vol. 17, Bund. R 2674, ISSN1089-3032
- 16. Miguel Taboada A. Soil Shrinkage Characteristics in Swelling Soils, Soil Physics Trieste, 2003, 3-21.
- Shamsudin MMH, Hamid NH, Sidek MNM, Aziz TIST, Awang H, Chao B. Cracks Monitoring and Resistivity Test for a Double-Storey House due to Cavity in the Soil. Civil Engineering and Architecture. 2021;9(5):1376-1388. http://www.hrpub.org DOI: 10.13189/cea.2021.090511
- Muawia Dafalla A, Mosleh Al-Shamrani A. Swelling Characteristics of Saudi Tayma Shale and Consequential Impact on Light Structures. Journal of Civil Engineering and Architecture, ISSN 1934-7359, USA. 2014 May;8(5, 78):613-623.
- 19. Omer Mughieda S, Khaldoon Bani-Hani A. Cracking of RC School Building Due to Soil Expansion. Jordan Journal of Civil Engineering, 2007, 1(4).
- 20. Omer Mughieda S. Expansive clay soil-structure interaction: A case study; c2014.
- Rishabh Pathak, Deepak Rastogi. Case Study on Cracks in Public Buildings and their Remedies. International Journal of Science and Research (IJSR); c2015. ISSN (Online): 2319-7064
- 22. Azam S, Ito M, Khan F. Influence of cracks on soil water characteristic curve, Advances in Unsaturated Soils: Caicedo *et al.* (eds); c2013. ISBN 978-0-415-62095-6.
- 23. Sara Freitas Novais Ferreira de Almeida. Systematization of common cracking patterns in buildings: Case studies; c2015 May.
- 24. Shruti Naik, Nisha Naik P, Sumitra Kandolkar S, Mandrekar RL. Settlement of a structure: A case study, Indian Geotechnical Conference, Kochi, 2011, Q-285.
- 25. Kakoli STN, Hanna AM. Causes of foundation failure and sudden volume reduction of collapsible soil during inundation, 4th Annual Paper Meet and 1st Civil Engineering Congress; c2011.
- Tapas Dasgupta. Geotechnical Aspects of Light Structures on Expansive Soils. International Journal of Scientific Engineering and Technology (ISSN: 2277-1581). 2013;2(12):1187-1193.
- Yilmaz I. Relationships between Liquid Limit, Cation Exchange Capacity, and Swelling Potentials of Clayey Soils. Eurasian Soil Science. 2001;37(5):506-512. From Pochvovedenie, No. 5; c2004. p. 588-595.